2.2 Assume that the waste disposal site was built on top of a 1 m thick low permeability clay liner that eliminates downward advection through the liner. a) Show how the Ogata-Banks solution is modified to eliminate advection. b) Calculate the time required for C/Co to equal 0.1 at the base of the liner. Plot the results and assume a precision of 2 decimal places in the analytical solution. Vx Dp αL Dh Co vx*t Dh*t 2*sqrt(Dh*t) t [L/T] [L²/T] [L] [L²/T] [mg/L³] [L] 1 1.00E-03 1 1.00E+00 50 800 [L²] 800.8 [L] [T] Ε 56.60 800 Spatial Interval = 1m Ogata-Banks Terms Note that L and T units must be consistent for all parameters Here L is in metres and T is in days Required input parameters are in blue x x-Vt 1st term 2nd term C/Co 01234569 -800 2.00E+00 6.73E-89 1.0000 1.2 -799 2.00E+00 1.11E-88 1.0000 -798 2.00E+00 1.82E-88 1.0000 1 -797 2.00E+00 2.99E-88 1.0000 -796 2.00E+00 4.91E-88 1.0000 -795 2.00E+00 8.06E-88 1.0000 -794 -793 2.00E+00 2.00E+00 1.32E-87 1.0000 2.17E-87 1.0000 8 -792 2.00E+00 3.55E-87 1.0000 9 -791 2.00E+00 Concentration 0.8 0.6 5.81E-87 1.0000 0.4 17222467622 10 -790 2.00E+00 9.51E-87 1.0000 11 -789 2.00E+00 1.56E-86 1.0000 0.2 -788 2.00E+00 2.54E-86 1.0000 13 -787 2.00E+00 4.15E-86 1.0000 -786 2.00E+00 6.77E-86 1.0000 0 15 -785 2.00E+00 1.10E-85 1.0000 5 10 15 20 25 25 -784 2.00E+00 1.80E-85 1.0000 -783 2.00E+00 2.93E-85 1.0000 Distance 18 -782 2.00E+00 4.78E-85 1.0000 19 -781 2.00E+00 7.77E-85 1.0000 20 -780 2.00E+00 1.26E-84 1.0000 Time Interval = 150 days Breakthrough Curve Position = 100 m Ogata-Banks Terms t vx*t Dh*t 2*sqrt(Dn*t) x- Vt 1st term 1 1 1.001 2.001 99 0.00E+00 150 150 150.150 24.507 -50 2.00E+00 2nd term 0.00E+00 8.57E-04 C/Co 0.00E+00 Breakthrough Curve 1.2 9.98E-01 300 300 300.300 34.658 -200 2.00E+00 1.68E-16 1.00E+00 1 450 450 450.450 42.448 -350 2.00E+00 1.29E-31 1.00E+00 600 600 600.600 49.014 -500 750 750 750.750 54.800 -650 900 900 900.900 60.030 -800 1050 1050 1051.050 64.840 1200 1200 1201.200 69.317 1350 1350 1351.350 73.521 2.00E+00 2.52E-47 2.00E+00 2.00E+00 2.50E-79 -950 2.00E+00 -1100 2.00E+00 1.28E-111 -1250 1.00E+00 2.87E-63 1.00E+00 1.00E+00 1.88E-95 1.00E+00 1.00E+00 Concentration 0.8 0.6 2.00E+00 8.27E-128 1.00E+00 0.4 1500 1500 1501.500 77.498 1650 1650 1651.650 81.281 -1400 2.00E+00 5.11E-144 -1550 2.00E+00 3.06E-160 1.00E+00 1.00E+00 0.2 1800 1800 1801.800 84.895 -1700 2.00E+00 1.80E-176 1.00E+00 1950 1950 1951.950 88.362 -1850 2.00E+00 1.04E-192 1.00E+00 0 2100 2100 2102.100 91.697 -2000 2.00E+00 5.90E-209 1.00E+00 0 500 1000 1500 2000 2500 3000 3500 2250 2250 2252.250 94.916 -2150 2.00E+00 3.32E-225 1.00E+00 2400 2400 2402.400 98.029 -2300 2.00E+00 1.86E-241 1.00E+00 Time 2550 2550 2552.550 101.046 -2450 2.00E+00 1.03E-257 1.00E+00 2700 2700 2702.700 103.975 -2600 2.00E+00 0.00E+00 1.00E+00 2850 2850 2852.850 106.824 3000 3000 3003.000 109.599 -2750 2.00E+00 0.00E+00 -2900 2.00E+00 0.00E+00 1.00E+00 1.00E+00
For this question you should read sections 2.1 to 2.5 in Fetter (1993) and it will be helpful to refer to the publication by Ogata and Banks (1961). Using the Ogata-Banks analytical solution to the advection-dispersion equation (see attached Excel spreadsheet), answer the questions below. Read Section 2.2 to understand the characteristics of the complimentary error function. Plot the results with concentration (C) on the Y axis and Time on the X axis. This form of plot is known as a breakthrough curve.
Conceptual Model
An unlined waste disposal site is located some distance L from a pristine river system. The waste disposal site is built on a sandy aquifer that has a relatively high permeability and the groundwater velocity varies seasonally from 0.2 to 0.8 m/day. The groundwater flow direction is from the waste disposal site toward the adjacent river.

![Vx
Dp
αL
Dh
Co
vx*t
Dh*t 2*sqrt(Dh*t)
t
[L/T]
[L²/T]
[L]
[L²/T]
[mg/L³]
[L]
1
1.00E-03
1
1.00E+00
50
800
[L²]
800.8
[L]
[T]
Ε
56.60
800
Spatial Interval =
1m
Ogata-Banks Terms
Note that L and T units must be consistent for all parameters
Here L is in metres and T is in days
Required input parameters are in blue
x
x-Vt
1st term
2nd term
C/Co
01234569
-800
2.00E+00
6.73E-89
1.0000
1.2
-799
2.00E+00
1.11E-88
1.0000
-798
2.00E+00
1.82E-88
1.0000
1
-797
2.00E+00
2.99E-88
1.0000
-796
2.00E+00
4.91E-88
1.0000
-795 2.00E+00
8.06E-88
1.0000
-794
-793 2.00E+00
2.00E+00
1.32E-87
1.0000
2.17E-87
1.0000
8
-792 2.00E+00
3.55E-87
1.0000
9
-791 2.00E+00
Concentration
0.8
0.6
5.81E-87
1.0000
0.4
17222467622
10
-790 2.00E+00
9.51E-87
1.0000
11
-789 2.00E+00
1.56E-86
1.0000
0.2
-788 2.00E+00
2.54E-86
1.0000
13
-787
2.00E+00
4.15E-86
1.0000
-786
2.00E+00
6.77E-86
1.0000
0
15
-785
2.00E+00
1.10E-85
1.0000
5
10
15
20
25
25
-784
2.00E+00
1.80E-85
1.0000
-783
2.00E+00
2.93E-85
1.0000
Distance
18
-782
2.00E+00
4.78E-85
1.0000
19
-781 2.00E+00
7.77E-85
1.0000
20
-780 2.00E+00
1.26E-84
1.0000
Time Interval =
150 days
Breakthrough Curve Position =
100 m
Ogata-Banks Terms
t
vx*t
Dh*t
2*sqrt(Dn*t)
x- Vt
1st term
1
1
1.001
2.001
99
0.00E+00
150
150
150.150
24.507
-50
2.00E+00
2nd term
0.00E+00
8.57E-04
C/Co
0.00E+00
Breakthrough Curve
1.2
9.98E-01
300
300
300.300
34.658
-200
2.00E+00 1.68E-16
1.00E+00
1
450
450
450.450
42.448
-350
2.00E+00 1.29E-31
1.00E+00
600
600
600.600
49.014
-500
750
750
750.750
54.800
-650
900
900
900.900
60.030
-800
1050
1050
1051.050
64.840
1200
1200
1201.200
69.317
1350
1350
1351.350
73.521
2.00E+00 2.52E-47
2.00E+00
2.00E+00 2.50E-79
-950 2.00E+00
-1100 2.00E+00 1.28E-111
-1250
1.00E+00
2.87E-63
1.00E+00
1.00E+00
1.88E-95
1.00E+00
1.00E+00
Concentration
0.8
0.6
2.00E+00 8.27E-128
1.00E+00
0.4
1500
1500
1501.500
77.498
1650
1650
1651.650
81.281
-1400 2.00E+00 5.11E-144
-1550 2.00E+00 3.06E-160
1.00E+00
1.00E+00
0.2
1800
1800
1801.800
84.895
-1700
2.00E+00 1.80E-176
1.00E+00
1950
1950
1951.950
88.362
-1850
2.00E+00 1.04E-192
1.00E+00
0
2100
2100
2102.100
91.697
-2000
2.00E+00 5.90E-209
1.00E+00
0
500
1000
1500
2000
2500
3000
3500
2250
2250
2252.250
94.916
-2150 2.00E+00 3.32E-225
1.00E+00
2400
2400
2402.400
98.029
-2300
2.00E+00 1.86E-241
1.00E+00
Time
2550
2550
2552.550
101.046
-2450
2.00E+00 1.03E-257
1.00E+00
2700
2700
2702.700
103.975
-2600
2.00E+00 0.00E+00
1.00E+00
2850
2850
2852.850
106.824
3000
3000 3003.000
109.599
-2750 2.00E+00 0.00E+00
-2900 2.00E+00 0.00E+00
1.00E+00
1.00E+00](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F06af1b32-6263-4eb1-b7f2-a49972c7a350%2F3d9de875-2a5a-4df2-8dd2-e32485235a65%2Fsf90odr_processed.png&w=3840&q=75)

Step by step
Solved in 2 steps with 2 images









