Vi let P be a fuction from R^n to R^n that fullfills the following two requirements: 1. P is linear, so for all x,y, includes R^n and all a, b includes R applies P(ax + by) = aP(x) + bP(y) 2. P is a projection, which means P•P = P Show that P is NOT equal to | så P is not an injective.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
3. Vi let P be a fuction from R^n to R^n that fullfills the following two requirements: 1. P is linear, so for all x,y, includes R^n and all a, b includes R applies P(ax + by) = aP(x) + bP(y) 2. P is a projection, which means P•P = P Show that P is NOT equal to | så P is not an injective.
3. Funktioner. Vi låter P vara en funktion från R" till R" som uppfyller följande två krav:
1. P är linjär, det vill säga för alla a, y E R" och alla a, b e R gäller P(ax +by) = aP(x)+bP(y).
2. P är en projektion, det vill säga Po P= P.
Visa att om P #i så är P inte injektiv.
Transcribed Image Text:3. Funktioner. Vi låter P vara en funktion från R" till R" som uppfyller följande två krav: 1. P är linjär, det vill säga för alla a, y E R" och alla a, b e R gäller P(ax +by) = aP(x)+bP(y). 2. P är en projektion, det vill säga Po P= P. Visa att om P #i så är P inte injektiv.
Expert Solution
steps

Step by step

Solved in 3 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,