Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution. d²y dx² When y = dy dx d²y dx² = = Cyxe3x, (3c₁ + €₂) e³r x + 3x-c₂e³x 3r dy +9y=0; y = c₁e³x + dx ₁₂e³x + 9c₁e³x + ³c₂e³x + 3c₂e³+ + 9c₂re ³x Thus, in terms of x, d²y dy dx² dx 8 Ste3t + 9y = +9(c_e3X + C,xe3x)
Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution. d²y dx² When y = dy dx d²y dx² = = Cyxe3x, (3c₁ + €₂) e³r x + 3x-c₂e³x 3r dy +9y=0; y = c₁e³x + dx ₁₂e³x + 9c₁e³x + ³c₂e³x + 3c₂e³+ + 9c₂re ³x Thus, in terms of x, d²y dy dx² dx 8 Ste3t + 9y = +9(c_e3X + C,xe3x)
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d²y
dx²
dy
dx
d²y
dx²
When y = c₁e³x + ₂xe³x,
C
dy
dx
6-
dx
3x
+ 9y = 0; y = c₁e³x + ₂x³x
(3c₁ + €₂) e ³x + 3x
3x
9c₁e³x
Thus, in terms of x,
d²y
+9y =
dx²
Need Help?
+ 3x-c₂e³x
+3c₂e³x + 3c2e³x +
Read It
3x
9c₂xe ³x
+ 9(ce3X + C,xe3x)
Watch It](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fb159ea24-ec33-411b-93d6-19afb03ffa76%2F5495ade6-2a82-42ec-b9f9-b9af32770cd3%2Fljbsgrm_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Verify that the indicated family of functions is a solution of the given differential equation. Assume an appropriate interval I of definition for each solution.
d²y
dx²
dy
dx
d²y
dx²
When y = c₁e³x + ₂xe³x,
C
dy
dx
6-
dx
3x
+ 9y = 0; y = c₁e³x + ₂x³x
(3c₁ + €₂) e ³x + 3x
3x
9c₁e³x
Thus, in terms of x,
d²y
+9y =
dx²
Need Help?
+ 3x-c₂e³x
+3c₂e³x + 3c2e³x +
Read It
3x
9c₂xe ³x
+ 9(ce3X + C,xe3x)
Watch It
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)