Verify that the divergence theorem is true for the vector field F on the region E. F(x, y, z) = (z, y, x); E is the solid ball x2 + y2 + z² s 25 First compute the divergence of F: div F = rexre = and F(r(p, 8)) = and JS.F. a Ә -(z) + ax ay J.F. F. (rxr) da - 1.³t [²² -(y) + S is a sphere of radius 5 centered at the origin which can be parametrized by r(,0) = (5 5 sin(p) cos(0), 5 sin(p) sin(0), 5 cos(p)), 0 spsx, 0 s0s 2x (similar to this example). Then -(so 5 cos(p) cos(8), 5 cos(p) sin(8), -5 sin(p)) x (-5 sin(p) sin(e), 5 sin(p) cos(6), - (25 sin³²(p) cos(6), 25 sin²(p) sin(0), [ 1) = (5 cos(p), 5 sin(p) sin(0), 5 sin(p) cos(0)). Thus, F. (rxr) 125 cos(p) sin2 (p) cos(0) + 125 sin³ (p) sin²(0)+ = 250 cos(p) sin²(p) cos(0) + dS= a (x): (250 cos(p) sin(p) cos(0) + (2x [250 in ³(m) cos(A) + ( , so II div sin³(p) sin² (6) div F dv= cos(p) sin(p) cos(6) MAC sin³(p) sin2 (0)) de de (¹ cos³(p) - cos(p)) sin²(e) de dV = V(E). This calculates to the exact value:
Verify that the divergence theorem is true for the vector field F on the region E. F(x, y, z) = (z, y, x); E is the solid ball x2 + y2 + z² s 25 First compute the divergence of F: div F = rexre = and F(r(p, 8)) = and JS.F. a Ә -(z) + ax ay J.F. F. (rxr) da - 1.³t [²² -(y) + S is a sphere of radius 5 centered at the origin which can be parametrized by r(,0) = (5 5 sin(p) cos(0), 5 sin(p) sin(0), 5 cos(p)), 0 spsx, 0 s0s 2x (similar to this example). Then -(so 5 cos(p) cos(8), 5 cos(p) sin(8), -5 sin(p)) x (-5 sin(p) sin(e), 5 sin(p) cos(6), - (25 sin³²(p) cos(6), 25 sin²(p) sin(0), [ 1) = (5 cos(p), 5 sin(p) sin(0), 5 sin(p) cos(0)). Thus, F. (rxr) 125 cos(p) sin2 (p) cos(0) + 125 sin³ (p) sin²(0)+ = 250 cos(p) sin²(p) cos(0) + dS= a (x): (250 cos(p) sin(p) cos(0) + (2x [250 in ³(m) cos(A) + ( , so II div sin³(p) sin² (6) div F dv= cos(p) sin(p) cos(6) MAC sin³(p) sin2 (0)) de de (¹ cos³(p) - cos(p)) sin²(e) de dV = V(E). This calculates to the exact value:
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,