Verify that λ, is an eigenvalue 8 -1 3 0 6 1 07 0 Ax₁ = Ax₂ = A 8-1 3 0 61 0 0 07 0 8-13 0 0 6 1 2 07 81 3 Ax₂ = 0 of A and that x; is a corresponding eigenvector. A₁ = 8, x₁ = (1, 0, 0) ₂ = 6₁ x₂ = (1, 2, 0) A3 = 7, x₂ = (-2, 1, 1) 61 07 ↓ T 000= 4E0 ↓ 1 ---- = 80=2₁x₁ [] 2 =2₂x₂ 7 [1]] = λ₂x3
Verify that λ, is an eigenvalue 8 -1 3 0 6 1 07 0 Ax₁ = Ax₂ = A 8-1 3 0 61 0 0 07 0 8-13 0 0 6 1 2 07 81 3 Ax₂ = 0 of A and that x; is a corresponding eigenvector. A₁ = 8, x₁ = (1, 0, 0) ₂ = 6₁ x₂ = (1, 2, 0) A3 = 7, x₂ = (-2, 1, 1) 61 07 ↓ T 000= 4E0 ↓ 1 ---- = 80=2₁x₁ [] 2 =2₂x₂ 7 [1]] = λ₂x3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
CORRECT ANSWER ONLY PLEASE HELP
![Verify that λ; is an eigenvalue of A and that x; is a corresponding eigenvector.
A₁ = 8, x₁ = (1, 0, 0)
1₂= 6, x₂ = (1, 2, 0)
13 = 7, x3 = (-2, 1, 1)
Ax₁ =
81 3
-630-
1
07
Ax2 =
A =
8 -1 3
0 6 1
0
07
Ax3
81 3
0 6 1
07
0
81 3
6 1
1
07
2 =
0
↓ 1
= 8
1 =
4E+
1
HOO
= 2₁*1
= 6 =1₂*₂
= 7](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8b9fb947-7d87-49f8-9e34-2adf636f2bfd%2F0996c678-9a95-4c35-adf6-432b293be8a8%2Fojtukr1f_processed.png&w=3840&q=75)
Transcribed Image Text:Verify that λ; is an eigenvalue of A and that x; is a corresponding eigenvector.
A₁ = 8, x₁ = (1, 0, 0)
1₂= 6, x₂ = (1, 2, 0)
13 = 7, x3 = (-2, 1, 1)
Ax₁ =
81 3
-630-
1
07
Ax2 =
A =
8 -1 3
0 6 1
0
07
Ax3
81 3
0 6 1
07
0
81 3
6 1
1
07
2 =
0
↓ 1
= 8
1 =
4E+
1
HOO
= 2₁*1
= 6 =1₂*₂
= 7
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)