Verify that 2; is an eigenvalue of A and that x; is a corresponding eigenvector. A1 = 9, x₁ = (1, 0, 0) 7 1 2₂ = 7, x₂ = (1, 2, 0) 08 23= 8, x3 = (-5, 1, 1) ;] 22 DE-¤~ Ax1 = AX2 = Ax3 9-16 A = 0 0 9-16 1 7 1 08 0 0 9-16 ~0~ ↓ 1 7 08 0 9-16 0 7 1 0 08 = -5 = 21x1 - = 22x2 -5 -[]-* = 8 1 = λ3x3 1
Verify that 2; is an eigenvalue of A and that x; is a corresponding eigenvector. A1 = 9, x₁ = (1, 0, 0) 7 1 2₂ = 7, x₂ = (1, 2, 0) 08 23= 8, x3 = (-5, 1, 1) ;] 22 DE-¤~ Ax1 = AX2 = Ax3 9-16 A = 0 0 9-16 1 7 1 08 0 0 9-16 ~0~ ↓ 1 7 08 0 9-16 0 7 1 0 08 = -5 = 21x1 - = 22x2 -5 -[]-* = 8 1 = λ3x3 1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Plz
![Verify that 2; is an eigenvalue of A and that x; is a corresponding eigenvector.
A1 = 9, X₁ = (1, 0, 0)
7 1 2₂ = 7, x₂ = (1, 2,0)
08 23= 8, x3 = (-5, 1, 1)
¡]
22
Ax1
DE-~
[1]
~0~
-5
-DE-0-
↓ 1
AX2
=
=
Ax3 =
9-16
A = 0
0
9-16 1
7 1
08 0
0
0
9-16
7
08
9-16
7 1
08
=
-5
=
1
21x1
= 22x2
= 8 1 = 23x3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F9a71a13f-73d5-49c2-a029-9881c2af7703%2F1e923fe4-8e84-4637-b480-7cd613d18bc4%2Frpjkqzk.jpeg&w=3840&q=75)
Transcribed Image Text:Verify that 2; is an eigenvalue of A and that x; is a corresponding eigenvector.
A1 = 9, X₁ = (1, 0, 0)
7 1 2₂ = 7, x₂ = (1, 2,0)
08 23= 8, x3 = (-5, 1, 1)
¡]
22
Ax1
DE-~
[1]
~0~
-5
-DE-0-
↓ 1
AX2
=
=
Ax3 =
9-16
A = 0
0
9-16 1
7 1
08 0
0
0
9-16
7
08
9-16
7 1
08
=
-5
=
1
21x1
= 22x2
= 8 1 = 23x3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)