Vector Spaces Prove property 3 by rearranging the flig Property 3 For every element A, B, C in V=M3x3 (ABB) C= A (BDC) A tet aij, bij, cij, dij, ei; and the with entries in A₁B₁C₁D = (AⓇB) + C, E = A (BOC), respectively B) Suppose A, B and C are in V = M3x3 c) from the definition of AB, dij -={a; jxb;;) x c;; and ei; = aijx (bijx cij) D) So, (AB) C = A + (PⓇC Since aij, bij, ci are real #'s dij=eij

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Vector Spaces**

**Prove property 3 by rearranging the following:**

**Property 3:** For every element \( A, B, C \) in \( V = M_{3 \times 3} \), \((A \oplus B) \oplus C = A \oplus (B \oplus C)\).

---

**A)** Let \( a_{ij}, b_{ij}, c_{ij}, d_{ij}, e_{ij} \) be the \( i,j \)-th entries in \( A, B, C, D = (A \oplus B) \oplus C, E = A \oplus (B \oplus C) \), respectively.

**B)** Suppose \( A, B, \) and \( C \) are in \( V = M_{3 \times 3} \).

**C)** From the definition of \( A \oplus B \), \( d_{ij} = (a_{ij} \times b_{ij}) \times c_{ij} \) and \( e_{ij} = a_{ij} \times (b_{ij} \times c_{ij}) \).

**D)** So, \((A \oplus B) \oplus C = A \oplus (B \oplus C) \).

**E)** Since \( a_{ij}, b_{ij}, c_{ij} \) are real numbers, \( d_{ij} = e_{ij} \).

*Answer for example FE, D, C, B, A*

[Box] [Box] [Box] [Box] [Box]

---

This document proves an associative property of vector spaces for matrices \( M_{3 \times 3} \) using element-wise operations and the associativity of real number multiplication.
Transcribed Image Text:**Vector Spaces** **Prove property 3 by rearranging the following:** **Property 3:** For every element \( A, B, C \) in \( V = M_{3 \times 3} \), \((A \oplus B) \oplus C = A \oplus (B \oplus C)\). --- **A)** Let \( a_{ij}, b_{ij}, c_{ij}, d_{ij}, e_{ij} \) be the \( i,j \)-th entries in \( A, B, C, D = (A \oplus B) \oplus C, E = A \oplus (B \oplus C) \), respectively. **B)** Suppose \( A, B, \) and \( C \) are in \( V = M_{3 \times 3} \). **C)** From the definition of \( A \oplus B \), \( d_{ij} = (a_{ij} \times b_{ij}) \times c_{ij} \) and \( e_{ij} = a_{ij} \times (b_{ij} \times c_{ij}) \). **D)** So, \((A \oplus B) \oplus C = A \oplus (B \oplus C) \). **E)** Since \( a_{ij}, b_{ij}, c_{ij} \) are real numbers, \( d_{ij} = e_{ij} \). *Answer for example FE, D, C, B, A* [Box] [Box] [Box] [Box] [Box] --- This document proves an associative property of vector spaces for matrices \( M_{3 \times 3} \) using element-wise operations and the associativity of real number multiplication.
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,