Various advanced texts in linear algebra prove the following determinant criterion for rank: The rank of a matrix A is r if and only if A has some r × r submatrix with a nonzero determinant, and all square submatrices of larger size have determinant zero. (A submatrix of A is any matrix obtained by deleting rows or columns of A. The matrix A itself is also considered to be a submatrix of A.) Use this criterion to find the rank of the matrix. 1 6 5 30 -1| rank (A) =

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Various advanced texts in linear algebra prove the following determinant criterion for rank:
The rank of a matrix A is r if and only if A has some r × r submatrix with a nonzero determinant, and all square submatrices of larger size
have determinant zero.
(A submatrix of A is any matrix obtained by deleting rows or columns of A. The matrix A itself is also considered to be a submatrix of A.)
Use this criterion to find the rank of the matrix.
16
5 30 -1
rank (A) =
Transcribed Image Text:Various advanced texts in linear algebra prove the following determinant criterion for rank: The rank of a matrix A is r if and only if A has some r × r submatrix with a nonzero determinant, and all square submatrices of larger size have determinant zero. (A submatrix of A is any matrix obtained by deleting rows or columns of A. The matrix A itself is also considered to be a submatrix of A.) Use this criterion to find the rank of the matrix. 16 5 30 -1 rank (A) =
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,