v. State, in terms of the model parameters, the null hypothesis that the marginal effect of teacher experience on expected math score does not differ between boys and girls, against the alterna- tive that boys benefit more from additional teacher experience. What test statistic would you use to carry out this test? What is the distribution of the test statistic assuming then null hypothesis is true, if N = 1200? What is the rejection region for a 5% test? Medic

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
Please answer 7.6 (a) part v.
Math score for a girl in a regular-sized class with a teacher having
10 years of experience?
iii. What is the null hypothesis, written in terms of the model parameters, that the sex of the child
has no effect on expected math score? What is the alternative hypothesis? What is the test
statistic for the null hypothesis and what is its distribution if the null hypothesis is true? What
is the test rejection region for a 5% test when N = 1200?
iv. It is conjectured that boys may benefit from small classes more than girls. What null and alter-
native hypothesis would you test to examine this conjecture? [Hint: Let the conjecture be the
alternative hypothesis.]
7.6 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach-
ii. What is the
ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome
of interest is a student's score on a math achievement test (MATHSCORE). Let SMALL = 1 if the
student is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of
years of teacher experience, TCHEXPER. Let BOY = 1 if the child is male and BOY = 0 if the child
is female.
8.
Write down the econometric specification of the linear regression model explaining MATHSCORE
as a function of SMALL, TCHEXPER, BOY and BOY X TCHEXPER, with parameters B₁, B₂,....
i. What is the expected math score for a boy in a small class with a teacher having 10 years of
experience?
ii. What is the expected math score for a girl in a regular-sized class with a teacher having
10 years of experience?
iii. What is the change in the expected math score for a boy in a small class with a teacher having
11 years of experience rather than 10?
iv. What is the change in the expected math score for a boy in a small class with a teacher having
13 years of experience rather than 12?
v. State, in terms of the model parameters, the null hypothesis that the marginal effect of teacher
experience on expected math score does not differ between boys and girls, against the alterna-
tive that boys benefit more from additional teacher experience. What test statistic would you use
to carry out this test? What is the distribution of the test statistic assuming then null hypothesis
is true, if N = 1200? What is the rejection region for a 5% test?
b. Modify the model in part (a) to include SMALL X BOY.
i. What is the expected math score for a boy in a small class with a teacher having 10 years of
experience?
ii. What is the expected math score for a girl in a regular-sized class with a teacher having
10 years of experience?
iii. What is the expected math score for a boy? What is it for a girl?
Transcribed Image Text:Math score for a girl in a regular-sized class with a teacher having 10 years of experience? iii. What is the null hypothesis, written in terms of the model parameters, that the sex of the child has no effect on expected math score? What is the alternative hypothesis? What is the test statistic for the null hypothesis and what is its distribution if the null hypothesis is true? What is the test rejection region for a 5% test when N = 1200? iv. It is conjectured that boys may benefit from small classes more than girls. What null and alter- native hypothesis would you test to examine this conjecture? [Hint: Let the conjecture be the alternative hypothesis.] 7.6 In 1985, the state of Tennessee carried out a statewide experiment with primary school students. Teach- ii. What is the ers and students were randomly assigned to be in a regular-sized class or a small class. The outcome of interest is a student's score on a math achievement test (MATHSCORE). Let SMALL = 1 if the student is in a small class and SMALL = 0 otherwise. The other variable of interest is the number of years of teacher experience, TCHEXPER. Let BOY = 1 if the child is male and BOY = 0 if the child is female. 8. Write down the econometric specification of the linear regression model explaining MATHSCORE as a function of SMALL, TCHEXPER, BOY and BOY X TCHEXPER, with parameters B₁, B₂,.... i. What is the expected math score for a boy in a small class with a teacher having 10 years of experience? ii. What is the expected math score for a girl in a regular-sized class with a teacher having 10 years of experience? iii. What is the change in the expected math score for a boy in a small class with a teacher having 11 years of experience rather than 10? iv. What is the change in the expected math score for a boy in a small class with a teacher having 13 years of experience rather than 12? v. State, in terms of the model parameters, the null hypothesis that the marginal effect of teacher experience on expected math score does not differ between boys and girls, against the alterna- tive that boys benefit more from additional teacher experience. What test statistic would you use to carry out this test? What is the distribution of the test statistic assuming then null hypothesis is true, if N = 1200? What is the rejection region for a 5% test? b. Modify the model in part (a) to include SMALL X BOY. i. What is the expected math score for a boy in a small class with a teacher having 10 years of experience? ii. What is the expected math score for a girl in a regular-sized class with a teacher having 10 years of experience? iii. What is the expected math score for a boy? What is it for a girl?
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman