(v) Finally, determine the degree n Taylor polynomial, pn, centered at x = 0 for f. η 1. p(x) = e'(Σ(-1)* **14) 2k k! k=0 η 2. P(x) = e(Σ*t) k k=0 3. pn(x) = 5. pn(2) e 4. Pn(m) = e(Σ(-1)^2*wt) k k=0 = 4 4 η 1 (ΣΑ) k! k=0 e η (Σ) k=0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

f(x) = e^(2x+4)

(part 5 of 5)
(v) Finally, determine the degree n Taylor
polynomial, pn, centered at x = 0 for f.
1. pn(2)
=
2. pn(x) :
=
η
et (Σ(-1)* k!
24
k=0
4
e
(Σ)
k=0
η
3. Pa(n) = e (ΣΗ**)
1
4
k!
k=0
όλ
η
5. P«(n) = e (Σ?)
k=0
4)
η
4. P(x) = e' (Σ(-1)* *r*)
24
:
k=0
Transcribed Image Text:(part 5 of 5) (v) Finally, determine the degree n Taylor polynomial, pn, centered at x = 0 for f. 1. pn(2) = 2. pn(x) : = η et (Σ(-1)* k! 24 k=0 4 e (Σ) k=0 η 3. Pa(n) = e (ΣΗ**) 1 4 k! k=0 όλ η 5. P«(n) = e (Σ?) k=0 4) η 4. P(x) = e' (Σ(-1)* *r*) 24 : k=0
3. 1/7 f(n) (0) = 27e4
n!
4. —ƒ(¹) (0)
5. f() (0) =
1. p3(x) = e
2. p3(x)
=
(part 4 of 5)
(iv) Determine the degree 3 Taylor polynomial,
P3, centered at x
0 for f.
=
3. p3(x) = e
6. p3(x)
2n
n
=
1
-4
5. p3(x) = е¯
-e4
n!
4
-4
4 (1 1+ 2x + 2x² +
e¹(1+2x - 2x²
e¹ (1
4. p3(x) = e¹(1 − 2x + 2x²
-4
¹(1 2x + 2x² (122:²³)
72³)
4
172³)
col Acol
1 + 2x 2x² ² + 1/32²³)
4
e¹ (1 + 2x + 2x² + ²32³3)
(part 3 of 5)
(iii) Compute the value of f(n) (0).
1. 1- f(n) (0) = 2" . e4
2.
1-7 f(n) (0)
=
2n
Teln
е
n!
Transcribed Image Text:3. 1/7 f(n) (0) = 27e4 n! 4. —ƒ(¹) (0) 5. f() (0) = 1. p3(x) = e 2. p3(x) = (part 4 of 5) (iv) Determine the degree 3 Taylor polynomial, P3, centered at x 0 for f. = 3. p3(x) = e 6. p3(x) 2n n = 1 -4 5. p3(x) = е¯ -e4 n! 4 -4 4 (1 1+ 2x + 2x² + e¹(1+2x - 2x² e¹ (1 4. p3(x) = e¹(1 − 2x + 2x² -4 ¹(1 2x + 2x² (122:²³) 72³) 4 172³) col Acol 1 + 2x 2x² ² + 1/32²³) 4 e¹ (1 + 2x + 2x² + ²32³3) (part 3 of 5) (iii) Compute the value of f(n) (0). 1. 1- f(n) (0) = 2" . e4 2. 1-7 f(n) (0) = 2n Teln е n!
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,