UX bisects ZVXZ and ZWUY. Complete the proof that XY = WX. Y 1 2 3 4 5 6 7 8 9 10 Statement 11 12 Z UX bisects ZVXZ 1 UX bisects, ZWUY ZYXZ ZVXW ZUXZ ZUXV ZXUYZWUX x UX UX mZUXY = m2UXZ + m2YXZ mZUXW=mZUXV + m2VXW mZUXY = m2UXV + m2VXW mZUXW = mZUXY AUXY AUXW XY WX Sushmit U W Reason Given Given Definition of angle bisector Definition of angle bisector Additive Property of Angle Measure Additive Property of Angle Measure Substitution Transitive Property of Equality Reflexive Property of Congruence ASA CPCTC

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
.
UX bisects ZVXZ and ZWUY. Complete the proof that XY WX.
Y
1
2
3
4
5
6
7
8
9
10
W
11
Z
Statement
UX bisects ZVXZ
←
UX bisects, ZWUY
x
ZYXZ ZVXW
ZUXZ ZUXV
ZXUY ZWUX
mZUXW = mZUXY
UX UX
AUXY AUXW
12 XY WX
Submit
mZUXY = m ZUXZ + m2YXZ
mZUXW = mZUXV + m2VXW
mZUXY = mZUXV + mZVXW
U
$
V
W
Reason
Given
Given
Definition of angle bisector
Definition of angle bisector
Additive Property of Angle Measure
Additive Property of Angle Measure
Substitution
Transitive Property of Equality
Reflexive Property of Congruence
ASA
CPCTC
6
▾
Transcribed Image Text:UX bisects ZVXZ and ZWUY. Complete the proof that XY WX. Y 1 2 3 4 5 6 7 8 9 10 W 11 Z Statement UX bisects ZVXZ ← UX bisects, ZWUY x ZYXZ ZVXW ZUXZ ZUXV ZXUY ZWUX mZUXW = mZUXY UX UX AUXY AUXW 12 XY WX Submit mZUXY = m ZUXZ + m2YXZ mZUXW = mZUXV + m2VXW mZUXY = mZUXV + mZVXW U $ V W Reason Given Given Definition of angle bisector Definition of angle bisector Additive Property of Angle Measure Additive Property of Angle Measure Substitution Transitive Property of Equality Reflexive Property of Congruence ASA CPCTC 6 ▾
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 3 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning