u(x, 0) = ÷(1 -), 0 0 Eq. 2 Uz = a?uxx, 0 < x < L, t > 0 Eq. 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Let u = (x,t) represent the temperature of a steelhose with length L. The temperature with t= 0 is (E.q 1 in picture) 

Temperature at the tips of the hose is constnat at (E.q 2)
Temperature inside the hose differs by the heattransferequation (E.q 3) where            α = constant

use method seperation of variables to determine u = u(x,t) when t>0

u(x, 0) = ÷(1 -),
0 <x< L
Eq. 1
u(0, t) %3D и(L,t) %3D 0,
t > 0
Eq. 2
Uz = a?uxx, 0 < x < L,
t > 0
Eq. 3
Transcribed Image Text:u(x, 0) = ÷(1 -), 0 <x< L Eq. 1 u(0, t) %3D и(L,t) %3D 0, t > 0 Eq. 2 Uz = a?uxx, 0 < x < L, t > 0 Eq. 3
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Follow-up Questions
Read through expert solutions to related follow-up questions below.
Follow-up Question

Follow up question. We are given   α2 = 0.1[cm2/s] and a hoselength of 1m. What is the temperature in the middle of the hose after 1000 seconds. Give a series solution and an approximate solution

Solution
Bartleby Expert
SEE SOLUTION
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,