Utilice el metodo de Gauss-Seidel para con x,=x,=x,=0 para la ecuacion 7x1 – x2 + 4x3 = 8 3x1 – 8x2 + 2x3 = – 4 4x1 + x2 – 6x3 | = 3 - Iterar hasta que se cumpla que Ix-x1<0.03 r+1 Seleccione una: O a. x,=2.368 X2=0.909 X3=-1.923 O b. x, =2.368 X2=0.909 X3=-2.923 O C. X, =-2.368 X2=-1.909 X3=-1.923 O d. x,=4.368 X2=1.909 X3=-1.923 O e. x,=2.368 x,=1.909 X,=-1.923

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

the -Seidel method for with x 0 = x 1 = x 2 = 0 for the equation

 
Iterate until | x ^ (r + 1) - x ^ r | <0.03
 
 
 
Utilice el metodo de Gauss-Seidel para con x,=x,=X,=0 para la ecuacion
7x1 – x2 + 4x3 = 8
Зх1 — 8х2 + 2х3
4x1 + x2 – 6x3
= - 4
-
= 3
-
Iterar hasta que se cumpla que |x-x|<0.03
r+1
Seleccione una:
О а. х, %32.368
X2=0.909
X3=-1.923
O b. x,=2.368
X2=0.909
X3=-2.923
O C. X, =-2.368
X,=-1.909
X3=-1.923
O d. X,=4.368
X2=1.909
X3=-1.923
О е.х, 32.368
X2=1.909
X3=-1.923
Transcribed Image Text:Utilice el metodo de Gauss-Seidel para con x,=x,=X,=0 para la ecuacion 7x1 – x2 + 4x3 = 8 Зх1 — 8х2 + 2х3 4x1 + x2 – 6x3 = - 4 - = 3 - Iterar hasta que se cumpla que |x-x|<0.03 r+1 Seleccione una: О а. х, %32.368 X2=0.909 X3=-1.923 O b. x,=2.368 X2=0.909 X3=-2.923 O C. X, =-2.368 X,=-1.909 X3=-1.923 O d. X,=4.368 X2=1.909 X3=-1.923 О е.х, 32.368 X2=1.909 X3=-1.923
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,