Using two intervals of Simpson's 1/3 rule, an estimate value of ff(x) dx is 11.51. The estimate of the same integral using 4 intervals of Simpson's 1/3 rule is nearly? (a) ¹+(2ƒ (3) − ƒ(5) + 2ƒ (7)) 2 11.51 4 (b) 2 •+₹ (2ƒ(3) − ƒ (5) + 2ƒ (7)) 11.51 2 (c) 2 +3 (2ƒ(3) + ƒ(5) + 2ƒ (7)) 11.51 4 (d) ·+7 (2ƒ(3) + ƒ(5) + 2ƒ (7)) 2

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Using two intervals of Simpson's 1/3 rule, an estimate value of ff(x) dx is
11.51. The estimate of the same integral using 4 intervals of Simpson's 1/3 rule
is nearly?
11.51
(a)^2;+ỷ(2f (3) – f(5)+2f(7)
11.51 4
(b)
+(2ƒ(3) − ƒ(5) + 2f (7))
2
11.51 2
(c) +7 (2ƒ(3) + ƒ(5) + 2ƒ(7))
2
11.51
4
(d)
・+3 (2ƒ(3) + ƒ(5) + 2ƒ(7))
2
Transcribed Image Text:Using two intervals of Simpson's 1/3 rule, an estimate value of ff(x) dx is 11.51. The estimate of the same integral using 4 intervals of Simpson's 1/3 rule is nearly? 11.51 (a)^2;+ỷ(2f (3) – f(5)+2f(7) 11.51 4 (b) +(2ƒ(3) − ƒ(5) + 2f (7)) 2 11.51 2 (c) +7 (2ƒ(3) + ƒ(5) + 2ƒ(7)) 2 11.51 4 (d) ・+3 (2ƒ(3) + ƒ(5) + 2ƒ(7)) 2
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,