Using the Value of a Function InExercises 37–42, use the given value toevaluate each function.37. sin t = 12 38. sin(−t) = 38(a) sin(−t) (a) sin t(b) csc(−t) (b) csc t39. cos(−t) = −15 40. cos t = −34(a) cos t (a) cos(−t)(b) sec(−t) (b) sec(−t)41. sin t = 45 42. cos t = 45(a) sin(π − t) (a) cos(π − t)(b) sin(t + π) (b) cos(t + π)
Using the Value of a Function InExercises 37–42, use the given value toevaluate each function.37. sin t = 12 38. sin(−t) = 38(a) sin(−t) (a) sin t(b) csc(−t) (b) csc t39. cos(−t) = −15 40. cos t = −34(a) cos t (a) cos(−t)(b) sec(−t) (b) sec(−t)41. sin t = 45 42. cos t = 45(a) sin(π − t) (a) cos(π − t)(b) sin(t + π) (b) cos(t + π)
Using the Value of a Function InExercises 37–42, use the given value toevaluate each function.37. sin t = 12 38. sin(−t) = 38(a) sin(−t) (a) sin t(b) csc(−t) (b) csc t39. cos(−t) = −15 40. cos t = −34(a) cos t (a) cos(−t)(b) sec(−t) (b) sec(−t)41. sin t = 45 42. cos t = 45(a) sin(π − t) (a) cos(π − t)(b) sin(t + π) (b) cos(t + π)
Using the Value of a Function In Exercises 37–42, use the given value to evaluate each function. 37. sin t = 1 2 38. sin(−t) = 3 8 (a) sin(−t) (a) sin t (b) csc(−t) (b) csc t 39. cos(−t) = −1 5 40. cos t = −3 4 (a) cos t (a) cos(−t) (b) sec(−t) (b) sec(−t) 41. sin t = 4 5 42. cos t = 4 5 (a) sin(π − t) (a) cos(π − t) (b) sin(t + π) (b) cos(t + π)
Expression, rule, or law that gives the relationship between an independent variable and dependent variable. Some important types of functions are injective function, surjective function, polynomial function, and inverse function.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.