Using the Inverse Function Theorem, what is (r-¹)' (9) given that r(x) = not include "(-¹) (9) =" in your answer.) Provide your answer below: =-3x³ - x² = x + 6? Note that r(-1) = 9. (Do -

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please help
### Inverse Function Theorem Problem

**Problem Statement:**
Using the Inverse Function Theorem, what is \((r^{-1})'(9)\) given that \(r(x) = -3x^3 - x^2 - x + 6\)? Note that \(r(-1) = 9\). (Do not include \((r^{-1})'(9) =\) in your answer.)

**Provide your answer below:**
[Text Box for Answer]

**Explanation:**
To find \((r^{-1})'(9)\) using the Inverse Function Theorem, follow these steps:

1. **Identify the function \(r(x)\)** and verify the condition provided.
   - Function: \( r(x) = -3x^3 - x^2 - x + 6 \)
   - Given: \( r(-1) = 9 \)

2. **Find the derivative of \(r(x)\), denoted as \( r'(x) \)**.
   
3. **Evaluate \( r'(x) \) at \( x = -1 \)** because \( r(-1) = 9 \).
   
4. **Apply the Inverse Function Theorem**, which states:
   \[
   (r^{-1})'(y) = \frac{1}{r'(x)} \quad \text{where} \quad r(x) = y.
   \]
   In this case, \((r^{-1})'(9) = \frac{1}{r'(-1)}\).

**Derivative Calculation:**
Calculate \( r'(x) \):
\[ r(x) = -3x^3 - x^2 - x + 6 \]
Applying the power rule:
\[ r'(x) = -9x^2 - 2x - 1 \]

**Evaluate at \( x = -1 \):**
\[ r'(-1) = -9(-1)^2 - 2(-1) - 1 \]
\[ r'(-1) = -9 + 2 - 1 \]
\[ r'(-1) = -8 \]

**Inverse Function Theorem Application:**
\[ (r^{-1})'(9) = \frac{1}{r'(-1)} = \frac{1}{-8} = -\frac{1}{8} \]

Therefore, the answer is:
\[ \boxed
Transcribed Image Text:### Inverse Function Theorem Problem **Problem Statement:** Using the Inverse Function Theorem, what is \((r^{-1})'(9)\) given that \(r(x) = -3x^3 - x^2 - x + 6\)? Note that \(r(-1) = 9\). (Do not include \((r^{-1})'(9) =\) in your answer.) **Provide your answer below:** [Text Box for Answer] **Explanation:** To find \((r^{-1})'(9)\) using the Inverse Function Theorem, follow these steps: 1. **Identify the function \(r(x)\)** and verify the condition provided. - Function: \( r(x) = -3x^3 - x^2 - x + 6 \) - Given: \( r(-1) = 9 \) 2. **Find the derivative of \(r(x)\), denoted as \( r'(x) \)**. 3. **Evaluate \( r'(x) \) at \( x = -1 \)** because \( r(-1) = 9 \). 4. **Apply the Inverse Function Theorem**, which states: \[ (r^{-1})'(y) = \frac{1}{r'(x)} \quad \text{where} \quad r(x) = y. \] In this case, \((r^{-1})'(9) = \frac{1}{r'(-1)}\). **Derivative Calculation:** Calculate \( r'(x) \): \[ r(x) = -3x^3 - x^2 - x + 6 \] Applying the power rule: \[ r'(x) = -9x^2 - 2x - 1 \] **Evaluate at \( x = -1 \):** \[ r'(-1) = -9(-1)^2 - 2(-1) - 1 \] \[ r'(-1) = -9 + 2 - 1 \] \[ r'(-1) = -8 \] **Inverse Function Theorem Application:** \[ (r^{-1})'(9) = \frac{1}{r'(-1)} = \frac{1}{-8} = -\frac{1}{8} \] Therefore, the answer is: \[ \boxed
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning