Using the derivatives of In x, tell in a complete sentence why Inr is increasing, and why its graph is concave downward.
Using the derivatives of In x, tell in a complete sentence why Inr is increasing, and why its graph is concave downward.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Problem 2
(a) **Explanation Using Derivatives of \( \ln x \):**
The function \( \ln x \) is increasing because its derivative, \( \frac{d}{dx}(\ln x) = \frac{1}{x} \), is positive for all \( x > 0 \). The graph of \( \ln x \) is concave downward because the second derivative, \( \frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} \), is negative for all \( x > 0 \).
(b) **Approximating \( \ln y \):**
Let \( y = 10^{100} \). Using \( \ln 10 \approx 2.3026 \), find an approximate numerical value of \( \ln y \).
(c) **Finding Integer \( z \):**
Again using \( \ln 10 \approx 2.3026 \), find an integer \( z \) such that \( \ln z > 1,000,000 \). (Together with part (a), this should convince one that \(\lim_{x \to \infty} \ln x = \infty\).)
(d) **Finding Number \( w \):**
Again using \( \ln 10 \approx 2.3026 \), find a number \( w \) such that \( \ln w < -1,000 \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F4ce3c102-932f-46ac-8a3f-a8eb61b551e7%2F18b2de7e-e0a0-441f-bfeb-74cdc982a97e%2F8rao4bg_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Problem 2
(a) **Explanation Using Derivatives of \( \ln x \):**
The function \( \ln x \) is increasing because its derivative, \( \frac{d}{dx}(\ln x) = \frac{1}{x} \), is positive for all \( x > 0 \). The graph of \( \ln x \) is concave downward because the second derivative, \( \frac{d^2}{dx^2}(\ln x) = -\frac{1}{x^2} \), is negative for all \( x > 0 \).
(b) **Approximating \( \ln y \):**
Let \( y = 10^{100} \). Using \( \ln 10 \approx 2.3026 \), find an approximate numerical value of \( \ln y \).
(c) **Finding Integer \( z \):**
Again using \( \ln 10 \approx 2.3026 \), find an integer \( z \) such that \( \ln z > 1,000,000 \). (Together with part (a), this should convince one that \(\lim_{x \to \infty} \ln x = \infty\).)
(d) **Finding Number \( w \):**
Again using \( \ln 10 \approx 2.3026 \), find a number \( w \) such that \( \ln w < -1,000 \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)