Using the Cross Product to Find the Equation of a Plane We know from Property (f) that the cross product u X v is orthogonal to both of the vectors u and v. Therefore, if u and v are a pair of direction vectors for a plane, then u X v is a normal vector for the plane. An example similar to, yet different from, the one given below can be found in the video Determinants: Properties and Applications 2 starting at 7:40. = Example: Consider the plane P in R³ that contains the three points p₁ = [1,0, 1], p2 = [1, 0, 0] and p3 Let u = P2 P₁ = and let v = P3 P1 = Since u and v (No answer given) scalar multiples of each other, they (No answer given) parallel and hence u and v serve as direction vectors for P. Using the cross product of the vectors u and v, we obtain that a normal vector for this plane is n=uxv= [0, 1, 0].
Using the Cross Product to Find the Equation of a Plane We know from Property (f) that the cross product u X v is orthogonal to both of the vectors u and v. Therefore, if u and v are a pair of direction vectors for a plane, then u X v is a normal vector for the plane. An example similar to, yet different from, the one given below can be found in the video Determinants: Properties and Applications 2 starting at 7:40. = Example: Consider the plane P in R³ that contains the three points p₁ = [1,0, 1], p2 = [1, 0, 0] and p3 Let u = P2 P₁ = and let v = P3 P1 = Since u and v (No answer given) scalar multiples of each other, they (No answer given) parallel and hence u and v serve as direction vectors for P. Using the cross product of the vectors u and v, we obtain that a normal vector for this plane is n=uxv= [0, 1, 0].
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 5 images
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,