Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Topic Video
Question
![**Using substitution:** Describe why \(\int x (5 - x^2)^3 \, dx \neq \int u^3 \, du\) where \(u = 5 - x^2\).
### Explanation
To understand why the integrals are not equivalent, we must consider the substitution process. The given substitution is \(u = 5 - x^2\).
1. **Differentiating**: By differentiating \(u\) with respect to \(x\), we get:
\[
\frac{du}{dx} = -2x \quad \Rightarrow \quad du = -2x \, dx \quad \Rightarrow \quad x \, dx = -\frac{1}{2} du
\]
2. **Substitution in the Integral**: Substitute \(u\) and \(x \, dx\) in the original integral:
\[
\int x (5 - x^2)^3 \, dx = \int (5 - x^2)^3 \cdot x \, dx = \int u^3 \cdot \left(-\frac{1}{2}\right) \, du = -\frac{1}{2} \int u^3 \, du
\]
This shows that the correct substitution results in a factor of \(-\frac{1}{2}\) in front of the integral of \(u^3\), clearly indicating that the expressions of these integrals are not directly equal without consideration of the factor introduced during substitution.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F8981e183-e99b-4707-a5da-051f46ea9291%2F196fa334-e444-4ae4-921a-5d1947250f5e%2Fbgtkb83_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Using substitution:** Describe why \(\int x (5 - x^2)^3 \, dx \neq \int u^3 \, du\) where \(u = 5 - x^2\).
### Explanation
To understand why the integrals are not equivalent, we must consider the substitution process. The given substitution is \(u = 5 - x^2\).
1. **Differentiating**: By differentiating \(u\) with respect to \(x\), we get:
\[
\frac{du}{dx} = -2x \quad \Rightarrow \quad du = -2x \, dx \quad \Rightarrow \quad x \, dx = -\frac{1}{2} du
\]
2. **Substitution in the Integral**: Substitute \(u\) and \(x \, dx\) in the original integral:
\[
\int x (5 - x^2)^3 \, dx = \int (5 - x^2)^3 \cdot x \, dx = \int u^3 \cdot \left(-\frac{1}{2}\right) \, du = -\frac{1}{2} \int u^3 \, du
\]
This shows that the correct substitution results in a factor of \(-\frac{1}{2}\) in front of the integral of \(u^3\), clearly indicating that the expressions of these integrals are not directly equal without consideration of the factor introduced during substitution.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
here we replace (5-x^2) with u then differentiate u, let us see
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning