Using spherical coordinates calculate ſezsqrt(x²+y²)dV where E={(x,y,z) | x²+y²+z²<4, x>0,y>0,z>0}

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
To compute the integral using spherical coordinates, follow the given steps. We will convert the given triple integral ∭_E z√(x² + y²) dV into spherical coordinates. Given:

\[ E = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq 4, \; x>0, \; y>0, \; z>0 \} \]
\[ \text{Calculate:} \quad \iiint_E z\sqrt{x^2 + y^2} \, dV \]

### Steps to Solve:

1. **Convert to Spherical Coordinates:**
   - In spherical coordinates, \( x = \rho \sin\phi \cos\theta \), \( y = \rho \sin\phi \sin\theta \), and \( z = \rho \cos\phi \).
   - The expression \( z\sqrt{x^2 + y^2} \) becomes \( \rho \cos\phi \cdot \rho \sin\phi \).

2. **Jacobian Determinant:**
   - The volume element \( dV \) in spherical coordinates is \( \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \).

3. **Set Boundaries:**
   - Given \( x^2 + y^2 + z^2 \leq 4 \), we have \( \rho \leq 2 \).
   - Since \( x>0, y>0, z>0 \), this corresponds to the first octant: \( 0 \leq \theta \leq \frac{\pi}{2} \), \( 0 \leq \phi \leq \frac{\pi}{2} \), \( 0 \leq \rho \leq 2 \).

4. **Integral Conversion:**
   \[ 
   \iiint_E z\sqrt{x^2 + y^2} \, dV  = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^2 (\rho \cos\phi \cdot \rho \sin\phi) \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta
   \]

5
Transcribed Image Text:To compute the integral using spherical coordinates, follow the given steps. We will convert the given triple integral ∭_E z√(x² + y²) dV into spherical coordinates. Given: \[ E = \{(x,y,z) \mid x^2 + y^2 + z^2 \leq 4, \; x>0, \; y>0, \; z>0 \} \] \[ \text{Calculate:} \quad \iiint_E z\sqrt{x^2 + y^2} \, dV \] ### Steps to Solve: 1. **Convert to Spherical Coordinates:** - In spherical coordinates, \( x = \rho \sin\phi \cos\theta \), \( y = \rho \sin\phi \sin\theta \), and \( z = \rho \cos\phi \). - The expression \( z\sqrt{x^2 + y^2} \) becomes \( \rho \cos\phi \cdot \rho \sin\phi \). 2. **Jacobian Determinant:** - The volume element \( dV \) in spherical coordinates is \( \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \). 3. **Set Boundaries:** - Given \( x^2 + y^2 + z^2 \leq 4 \), we have \( \rho \leq 2 \). - Since \( x>0, y>0, z>0 \), this corresponds to the first octant: \( 0 \leq \theta \leq \frac{\pi}{2} \), \( 0 \leq \phi \leq \frac{\pi}{2} \), \( 0 \leq \rho \leq 2 \). 4. **Integral Conversion:** \[ \iiint_E z\sqrt{x^2 + y^2} \, dV = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{2}} \int_0^2 (\rho \cos\phi \cdot \rho \sin\phi) \rho^2 \sin\phi \, d\rho \, d\phi \, d\theta \] 5
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,