Using Refrigeration 22 Table: PROPERTIES OF LIQUID AND SATURATED VAPOR An R22 standard refrigerating cycle operates at an evaporator pressure of 367.01 kPa and a condensing pressure of 1833.45 kPa. It is desired to increase the evaporator pressure from 367.01 to 602.28 kPa. Determine For 367.01 kPa Evaporator (a) temperature and degree superheat leaving the compressor (b) mass of vapor entering the evaporator (c) evaporator load (d) condenser load (e) work on the compressor (f) coefficient of performance For 602.28 kPa Evaporator (g) temperature and degree superheat leaving the compressor (h) mass of vapor entering evaporator 18 answers (i) evaporator load (j) condenser load (k) work on the compressor (l) coefficient of performance Show the effects of increasing evaporator pressure (m) condenser load per ton of refrigeration (n) work on compressor per ton of refrigeration (o) mass flow rate of refrigerant per ton of refrigeration (p) volume capacity of compressor per ton of refrigeration R22 standard refrigerating cycle operates at an evaporator pressure of 367.01 kPa and a condensing pressure of 1833.45 kPa. It is desired to increase the evaporator pressure from 367.01 to 602.28 kPa. Determine For 367.01 kPa Evaporator (a) temperature and degree superheat leaving the compressor (b) mass of vapor entering evaporator (c) evaporator load (d) condenser load (e) work on the compressor (f) coefficient of performance For 602.28 kPa Evaporator (g) temperature and degree superheat leaving the compressor (h) mass of vapor entering evaporator 18 answers (i) evaporator load (j) condenser load (k) work on the compressor (l) coefficient of performance Show the effects of increasing evaporator pressure (m) condenser load per ton of refrigeration (n) work on compressor per ton of refrigeration (o) mass flow rate of refrigerant per ton of refrigeration (p) volume capacity of compressor per ton of refrigeration
Using Refrigeration 22 Table: PROPERTIES OF LIQUID AND SATURATED VAPOR
An R22 standard refrigerating cycle operates at an evaporator pressure of 367.01 kPa and a condensing pressure
of 1833.45 kPa. It is desired to increase the evaporator pressure from 367.01 to 602.28 kPa.
Determine
For 367.01 kPa Evaporator
(a) temperature and degree superheat leaving the compressor
(b) mass of vapor entering the evaporator
(c) evaporator load
(d) condenser load
(e) work on the compressor
(f) coefficient of performance
For 602.28 kPa Evaporator
(g) temperature and degree superheat leaving the compressor
(h) mass of vapor entering evaporator 18 answers
(i) evaporator load
(j) condenser load
(k) work on the compressor
(l) coefficient of performance
Show the effects of increasing evaporator pressure
(m) condenser load per ton of refrigeration
(n) work on compressor per ton of refrigeration
(o) mass flow rate of refrigerant per ton of refrigeration
(p) volume capacity of compressor per ton of refrigeration R22 standard refrigerating cycle operates at an evaporator pressure of 367.01 kPa and a condensing pressure
of 1833.45 kPa. It is desired to increase the evaporator pressure from 367.01 to 602.28 kPa.
Determine
For 367.01 kPa Evaporator
(a) temperature and degree superheat leaving the compressor
(b) mass of vapor entering evaporator
(c) evaporator load
(d) condenser load
(e) work on the compressor
(f) coefficient of performance
For 602.28 kPa Evaporator
(g) temperature and degree superheat leaving the compressor
(h) mass of vapor entering evaporator 18 answers
(i) evaporator load
(j) condenser load
(k) work on the compressor
(l) coefficient of performance
Show the effects of increasing evaporator pressure
(m) condenser load per ton of refrigeration
(n) work on compressor per ton of refrigeration
(o) mass flow rate of refrigerant per ton of refrigeration
(p) volume capacity of compressor per ton of refrigeration
![](/static/compass_v2/shared-icons/check-mark.png)
Step by step
Solved in 3 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Elements Of Electromagnetics](https://www.bartleby.com/isbn_cover_images/9780190698614/9780190698614_smallCoverImage.gif)
![Mechanics of Materials (10th Edition)](https://www.bartleby.com/isbn_cover_images/9780134319650/9780134319650_smallCoverImage.gif)
![Thermodynamics: An Engineering Approach](https://www.bartleby.com/isbn_cover_images/9781259822674/9781259822674_smallCoverImage.gif)
![Control Systems Engineering](https://www.bartleby.com/isbn_cover_images/9781118170519/9781118170519_smallCoverImage.gif)
![Mechanics of Materials (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337093347/9781337093347_smallCoverImage.gif)
![Engineering Mechanics: Statics](https://www.bartleby.com/isbn_cover_images/9781118807330/9781118807330_smallCoverImage.gif)