Using Cauchy-Riemann equations, show that the function f(z)=(z+6)^2 is differentiable everywhere

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Using Cauchy-Riemann equations, show that the function f(z)=(z+6)^2 is differentiable everywhere.
Expert Solution
Step 1

The given function is 

     f(z)=z+62f(z)=z2+12z+36                   -(1)

Substitute the value z=x+iy in equation (1).

     f(z)=x+iy2+12x+iy+36f(z)=x2+y2+2ixy+12x+12iy+36f(z)=x2+y2+12x+36+i2xy+12y                                  -(2)

Comparing equation (2) with the equation f(z)=u+iv we get:

u=x2+y2+12x+36 v=2xy+12y

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,