User the function f(x) = 3"-5 - 4 to answer the following: (a) Determine the equation of the asymptote of f(x). y = -4 (b) Determine the domain of f(x) in interval notation. (-0,00) (c) Determine the range of f(x) in interval notation.
User the function f(x) = 3"-5 - 4 to answer the following: (a) Determine the equation of the asymptote of f(x). y = -4 (b) Determine the domain of f(x) in interval notation. (-0,00) (c) Determine the range of f(x) in interval notation.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Using the function \( f(x) = 3^{x-5} - 4 \) to answer the following questions:**
(a) **Determine the equation of the asymptote of \( f(x) \):**
\[
y = -4
\]
(b) **Determine the domain of \( f(x) \) in interval notation:**
\[
(-\infty, \infty)
\]
(c) **Determine the range of \( f(x) \) in interval notation:**
\[
(-4, \infty)
\]](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0fc3766d-bc8c-44dc-b95b-e319f0e06bc0%2F24c5fadf-65c7-42fe-8653-048befe146c2%2F3bxch65_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Using the function \( f(x) = 3^{x-5} - 4 \) to answer the following questions:**
(a) **Determine the equation of the asymptote of \( f(x) \):**
\[
y = -4
\]
(b) **Determine the domain of \( f(x) \) in interval notation:**
\[
(-\infty, \infty)
\]
(c) **Determine the range of \( f(x) \) in interval notation:**
\[
(-4, \infty)
\]
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
(a)
The given function is an exponential function.
It is known that, the exponential function generally has no vertical asymptotes.
Note that, the horizontal asymptote of the function y=f(x) is the line y=L, if either .
Obtain the value of .
Obtain the value of .
Therefore, the horizontal asymptote of the given function is
Step by step
Solved in 3 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)