Use the trigonometric substitution r 2 sin 0 to compute the integral -2 VA – r² dx

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Problem Statement:**

Use the trigonometric substitution \( x = 2 \sin \theta \) to compute the integral

\[
\int_{-2}^{2} \sqrt{4 - x^2} \, dx
\]

**Solution Explanation:**

This problem involves using a trigonometric substitution to evaluate the integral of a square root function. The substitution \( x = 2 \sin \theta \) is typical for integrals involving square roots of the form \( \sqrt{a^2 - x^2} \), which in this case is \( \sqrt{4 - x^2} \).

**Steps:**

1. **Substitute** \( x = 2 \sin \theta \), which implies \( dx = 2 \cos \theta \, d\theta \).
   
2. **Change Limits of Integration:**
   - When \( x = -2 \), \( \sin \theta = -1 \), so \( \theta = -\frac{\pi}{2} \).
   - When \( x = 2 \), \( \sin \theta = 1 \), so \( \theta = \frac{\pi}{2} \).

3. **Express the Integral in terms of \(\theta\):**
   
   \[
   \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{4 - (2 \sin \theta)^2} \cdot 2 \cos \theta \, d\theta
   \]

   Simplify inside the square root:
   
   \[
   \sqrt{4 - 4 \sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta
   \]

4. **Simplified Integral:**

   \[
   \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cos^2 \theta \, d\theta
   \]

5. **Evaluate the Integral:**

   Using the identity \( \cos^2 \theta = \frac{1 + \cos 2\
Transcribed Image Text:**Problem Statement:** Use the trigonometric substitution \( x = 2 \sin \theta \) to compute the integral \[ \int_{-2}^{2} \sqrt{4 - x^2} \, dx \] **Solution Explanation:** This problem involves using a trigonometric substitution to evaluate the integral of a square root function. The substitution \( x = 2 \sin \theta \) is typical for integrals involving square roots of the form \( \sqrt{a^2 - x^2} \), which in this case is \( \sqrt{4 - x^2} \). **Steps:** 1. **Substitute** \( x = 2 \sin \theta \), which implies \( dx = 2 \cos \theta \, d\theta \). 2. **Change Limits of Integration:** - When \( x = -2 \), \( \sin \theta = -1 \), so \( \theta = -\frac{\pi}{2} \). - When \( x = 2 \), \( \sin \theta = 1 \), so \( \theta = \frac{\pi}{2} \). 3. **Express the Integral in terms of \(\theta\):** \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sqrt{4 - (2 \sin \theta)^2} \cdot 2 \cos \theta \, d\theta \] Simplify inside the square root: \[ \sqrt{4 - 4 \sin^2 \theta} = \sqrt{4(1 - \sin^2 \theta)} = \sqrt{4 \cos^2 \theta} = 2 \cos \theta \] 4. **Simplified Integral:** \[ \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 2 \cos \theta \cdot 2 \cos \theta \, d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 4 \cos^2 \theta \, d\theta \] 5. **Evaluate the Integral:** Using the identity \( \cos^2 \theta = \frac{1 + \cos 2\
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning