Use the Taylor series in Table 11.5 to find the first four nonzero terms of the Taylor series for the following functions centered at 0.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
**Instructions:** 

Use the Taylor series in Table 11.5 to find the first four nonzero terms of the Taylor series for the following functions centered at 0.

**Problem 36:**  \(\sin{x^2}\)
Transcribed Image Text:**Instructions:** Use the Taylor series in Table 11.5 to find the first four nonzero terms of the Taylor series for the following functions centered at 0. **Problem 36:** \(\sin{x^2}\)
## Table 11.5: Power Series Expansions

### Geometric Series
- \(\frac{1}{1-x} = 1 + x + x^2 + \cdots = \sum_{k=0}^{\infty} x^k, \quad \text{for } |x| < 1\)

- \(\frac{1}{1+x} = 1 - x + x^2 - \cdots = \sum_{k=0}^{\infty} (-1)^k x^k, \quad \text{for } |x| < 1\)

### Exponential Functions
- \(e^x = 1 + x + \frac{x^2}{2!} + \cdots = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \text{for } |x| < \infty\)

### Trigonometric Functions
- \(\sin x = x - \frac{x^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \quad \text{for } |x| < \infty\)

- \(\cos x = 1 - \frac{x^2}{2!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \quad \text{for } |x| < \infty\)

### Logarithmic Functions
- \(\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \quad \text{for } -1 < x \leq 1\)

- \(-\ln(1 - x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots = \sum_{k=1}^{\infty} \frac{x^k}{k}, \quad \text{for } -1 \leq x < 1\)

###
Transcribed Image Text:## Table 11.5: Power Series Expansions ### Geometric Series - \(\frac{1}{1-x} = 1 + x + x^2 + \cdots = \sum_{k=0}^{\infty} x^k, \quad \text{for } |x| < 1\) - \(\frac{1}{1+x} = 1 - x + x^2 - \cdots = \sum_{k=0}^{\infty} (-1)^k x^k, \quad \text{for } |x| < 1\) ### Exponential Functions - \(e^x = 1 + x + \frac{x^2}{2!} + \cdots = \sum_{k=0}^{\infty} \frac{x^k}{k!}, \quad \text{for } |x| < \infty\) ### Trigonometric Functions - \(\sin x = x - \frac{x^3}{3!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k+1}}{(2k+1)!}, \quad \text{for } |x| < \infty\) - \(\cos x = 1 - \frac{x^2}{2!} + \cdots = \sum_{k=0}^{\infty} \frac{(-1)^k x^{2k}}{(2k)!}, \quad \text{for } |x| < \infty\) ### Logarithmic Functions - \(\ln(1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \cdots = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} x^k}{k}, \quad \text{for } -1 < x \leq 1\) - \(-\ln(1 - x) = x + \frac{x^2}{2} + \frac{x^3}{3} + \cdots = \sum_{k=1}^{\infty} \frac{x^k}{k}, \quad \text{for } -1 \leq x < 1\) ###
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning