Use the table to calculate the average rage of change over the interval 5 ≤x≤ 30, rounded to 3 decimal places. You must show worki x y 20 5 1.2619 10 2 15 2.4022 20 2.6801 25 2.8928 30 3.065
Use the table to calculate the average rage of change over the interval 5 ≤x≤ 30, rounded to 3 decimal places. You must show worki x y 20 5 1.2619 10 2 15 2.4022 20 2.6801 25 2.8928 30 3.065
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Calculating the Average Rate of Change Over a Given Interval**
**Instructions:**
Use the table below to calculate the average rate of change over the interval \(5 \leq x \leq 30\), rounded to three decimal places. You must show your work.
| x | y |
|----|---------|
| 2 | 0 |
| 5 | 1.2619 |
| 10 | 2 |
| 15 | 2.4022 |
| 20 | 2.6801 |
| 25 | 2.8928 |
| 30 | 3.065 |
**Solution:**
To calculate the average rate of change of the function \( y \) with respect to \( x \) over the interval \( [5, 30] \):
1. Identify the values of \( y \) corresponding to \( x = 5 \) and \( x = 30 \).
\[
y_1 = 1.2619 \quad \text{(when } x = 5 \text{)}, \quad y_2 = 3.065 \quad \text{(when } x = 30 \text{)}
\]
2. Use the formula for the average rate of change:
\[
\text{Average Rate of Change} = \frac{y_2 - y_1}{x_2 - x_1}
\]
3. Substitute the values:
\[
\text{Average Rate of Change} = \frac{3.065 - 1.2619}{30 - 5} = \frac{1.8031}{25} = 0.0721
\]
Therefore, the average rate of change over the interval \(5 \leq x \leq 30\) is approximately \(0.072 \) (rounded to three decimal places).
**Explanation of the Table:**
The table shows two columns with values of \( x \) and corresponding values of \( y \). Each row represents a pair of \( x \) and \( y \) values which can be used to analyze the changes in \( y \) as \( x \) varies.
- The first column represents the \( x \)-values: 2, 5, 10, 15, 20, 25, 30](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F45e4ee6c-a715-4803-9fbe-92a41a442b45%2F69cd0cd2-1843-4d06-938c-22f8187489a3%2Fdk9wyk_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Calculating the Average Rate of Change Over a Given Interval**
**Instructions:**
Use the table below to calculate the average rate of change over the interval \(5 \leq x \leq 30\), rounded to three decimal places. You must show your work.
| x | y |
|----|---------|
| 2 | 0 |
| 5 | 1.2619 |
| 10 | 2 |
| 15 | 2.4022 |
| 20 | 2.6801 |
| 25 | 2.8928 |
| 30 | 3.065 |
**Solution:**
To calculate the average rate of change of the function \( y \) with respect to \( x \) over the interval \( [5, 30] \):
1. Identify the values of \( y \) corresponding to \( x = 5 \) and \( x = 30 \).
\[
y_1 = 1.2619 \quad \text{(when } x = 5 \text{)}, \quad y_2 = 3.065 \quad \text{(when } x = 30 \text{)}
\]
2. Use the formula for the average rate of change:
\[
\text{Average Rate of Change} = \frac{y_2 - y_1}{x_2 - x_1}
\]
3. Substitute the values:
\[
\text{Average Rate of Change} = \frac{3.065 - 1.2619}{30 - 5} = \frac{1.8031}{25} = 0.0721
\]
Therefore, the average rate of change over the interval \(5 \leq x \leq 30\) is approximately \(0.072 \) (rounded to three decimal places).
**Explanation of the Table:**
The table shows two columns with values of \( x \) and corresponding values of \( y \). Each row represents a pair of \( x \) and \( y \) values which can be used to analyze the changes in \( y \) as \( x \) varies.
- The first column represents the \( x \)-values: 2, 5, 10, 15, 20, 25, 30
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra and Trigonometry (6th Edition)](https://www.bartleby.com/isbn_cover_images/9780134463216/9780134463216_smallCoverImage.gif)
Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON
![Contemporary Abstract Algebra](https://www.bartleby.com/isbn_cover_images/9781305657960/9781305657960_smallCoverImage.gif)
Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning
![Linear Algebra: A Modern Introduction](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning
![Algebra And Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780135163078/9780135163078_smallCoverImage.gif)
Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON
![Introduction to Linear Algebra, Fifth Edition](https://www.bartleby.com/isbn_cover_images/9780980232776/9780980232776_smallCoverImage.gif)
Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press
![College Algebra (Collegiate Math)](https://www.bartleby.com/isbn_cover_images/9780077836344/9780077836344_smallCoverImage.gif)
College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education