→ Use the Table of Integrals to find the following antiderivatives. Be sure to cite the Formula number of the integral in the Tables (eg. #81). dx x²-4 √1 + x²dx=

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
# Table of Integrals

### Trigonometric Forms

1. **Integral of \(\sin^n u\)**:
   \[
   \int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \cos u + \frac{n - 1}{n} \int \sin^{n-2} u \, du
   \]

2. **Integral of \(\cos^n u\)**:
   \[
   \int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \sin u + \frac{n - 1}{n} \int \cos^{n-2} u \, du
   \]

3. **Sum and Difference of Sine and Cosine Integrals**:
   - \(\int \sin au \sin bu \, du\)
   - \(\int \cos au \cos bu \, du\)
   - \(\int \sin au \cos bu \, du\)

   These involve sine and cosine functions of different arguments and are integrated using the identities:
   \[
   \int \sin au \sin bu \, du = \frac{\sin (a - b) u}{2(a - b)} - \frac{\sin (a + b) u}{2(a + b)} + C
   \]
   \[
   \int \cos au \cos bu \, du = \frac{\sin (a - b) u}{2(a - b)} + \frac{\sin (a + b) u}{2(a + b)} + C
   \]
   \[
   \int \sin au \cos bu \, du = -\frac{\cos (a - b) u}{2(a - b)} + \frac{\cos (a + b) u}{2(a + b)} + C
   \]

4. **Inverse Trigonometric Integrals**:
   - Integrals like \(\int \sin^{-1} u \, du\) and \(\int \cos^{-1} u \, du\) are given, with results involving inverse trigonometric functions and square roots.

### Key Integrals and Their Results

- **\(\int \tan^n u \, du\) and \(\int \cot^
Transcribed Image Text:# Table of Integrals ### Trigonometric Forms 1. **Integral of \(\sin^n u\)**: \[ \int \sin^n u \, du = -\frac{1}{n} \sin^{n-1} u \cos u + \frac{n - 1}{n} \int \sin^{n-2} u \, du \] 2. **Integral of \(\cos^n u\)**: \[ \int \cos^n u \, du = \frac{1}{n} \cos^{n-1} u \sin u + \frac{n - 1}{n} \int \cos^{n-2} u \, du \] 3. **Sum and Difference of Sine and Cosine Integrals**: - \(\int \sin au \sin bu \, du\) - \(\int \cos au \cos bu \, du\) - \(\int \sin au \cos bu \, du\) These involve sine and cosine functions of different arguments and are integrated using the identities: \[ \int \sin au \sin bu \, du = \frac{\sin (a - b) u}{2(a - b)} - \frac{\sin (a + b) u}{2(a + b)} + C \] \[ \int \cos au \cos bu \, du = \frac{\sin (a - b) u}{2(a - b)} + \frac{\sin (a + b) u}{2(a + b)} + C \] \[ \int \sin au \cos bu \, du = -\frac{\cos (a - b) u}{2(a - b)} + \frac{\cos (a + b) u}{2(a + b)} + C \] 4. **Inverse Trigonometric Integrals**: - Integrals like \(\int \sin^{-1} u \, du\) and \(\int \cos^{-1} u \, du\) are given, with results involving inverse trigonometric functions and square roots. ### Key Integrals and Their Results - **\(\int \tan^n u \, du\) and \(\int \cot^
### Example Problem: Finding Antiderivatives

Use the Table of Integrals to find the following antiderivatives. Be sure to cite the formula number of the integral in the Tables (e.g., #81).

1. \(\int \frac{dx}{x^2 - 4} =\)

2. \(\int \sqrt{1 + x^2} \, dx =\)
Transcribed Image Text:### Example Problem: Finding Antiderivatives Use the Table of Integrals to find the following antiderivatives. Be sure to cite the formula number of the integral in the Tables (e.g., #81). 1. \(\int \frac{dx}{x^2 - 4} =\) 2. \(\int \sqrt{1 + x^2} \, dx =\)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning