Use the table below to find X f'(x) g'(x) 1 2 1 [1.3f(x)] |x = 5 = 253 1 [1.3f(x)] dx 3 4 1 2 لی اند 3 4 |x=5 545 (Type an integer or a decimal.)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem Statement

Use the table below to find \( \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \).

### Table

| \( x \) | 1 | 2 | 3 | 4 | 5 |
|---------|---|---|---|---|---|
| \( f'(x) \) | 2 | 5 | 3 | 1 | 4 |
| \( g'(x) \) | 1 | 3 | 4 | 2 | 5 |

### Solution

Calculate \( \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \).

\[ \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \]

To find this derivative, use the constant multiple rule, which states that the derivative of a constant multiplied by a function is the constant multiplied by the derivative of the function. 

Thus:

\[ \frac{d}{dx}[1.3f(x)] = 1.3 \cdot f'(x) \]

Substitute \( x = 5 \) into the equation:

\[ \left. 1.3 \cdot f'(x) \right|_{x=5} = 1.3 \cdot f'(5) \]

From the table, \( f'(5) = 4 \).

Therefore:

\[ 1.3 \cdot 4 = 5.2 \]

### Final Answer

\[ \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} = 5.2 \]

(Type an integer or a decimal.)
Transcribed Image Text:### Problem Statement Use the table below to find \( \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \). ### Table | \( x \) | 1 | 2 | 3 | 4 | 5 | |---------|---|---|---|---|---| | \( f'(x) \) | 2 | 5 | 3 | 1 | 4 | | \( g'(x) \) | 1 | 3 | 4 | 2 | 5 | ### Solution Calculate \( \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \). \[ \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} \] To find this derivative, use the constant multiple rule, which states that the derivative of a constant multiplied by a function is the constant multiplied by the derivative of the function. Thus: \[ \frac{d}{dx}[1.3f(x)] = 1.3 \cdot f'(x) \] Substitute \( x = 5 \) into the equation: \[ \left. 1.3 \cdot f'(x) \right|_{x=5} = 1.3 \cdot f'(5) \] From the table, \( f'(5) = 4 \). Therefore: \[ 1.3 \cdot 4 = 5.2 \] ### Final Answer \[ \left. \frac{d}{dx}[1.3f(x)] \right|_{x=5} = 5.2 \] (Type an integer or a decimal.)
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning