Use the table below to estimate 3 [ƒ(2x)+2g(x)]dx by using a Riemann sum with 6 rectangles of equal width using the right endpoint of ach interval. x 01/213/2 f(x) 1 2019 25/2 3 7/2 4 9/2 5 11/2 6 3 2020 4 5! 4 g(x) 4 3 3 2 2 1 1 Cos 0 TL 8 1 TC 2023 1 e 210 T √2 sin- 12 5 √√6
Use the table below to estimate 3 [ƒ(2x)+2g(x)]dx by using a Riemann sum with 6 rectangles of equal width using the right endpoint of ach interval. x 01/213/2 f(x) 1 2019 25/2 3 7/2 4 9/2 5 11/2 6 3 2020 4 5! 4 g(x) 4 3 3 2 2 1 1 Cos 0 TL 8 1 TC 2023 1 e 210 T √2 sin- 12 5 √√6
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![3. Use the table below to estimate
[ƒ(2x)+28(x)]dx
by using a Riemann sum with 6 rectangles of equal width
using the right endpoint of ach interval.
X 01/2 1 3/2 2
f(x) 1 2019 3 2020
g(x) 4
3
3
3 2
0
4
2
5/2
5!
1
3
4
1
7/2 4 9/2
Cos
0
1 2023
TU
1
11/2
210
e √2 sin-
12
6
5
√√6](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fabf7f939-657a-4cb9-aa9d-1310fbdc7d61%2F7369213e-bbce-4cd9-b58f-d904b63335b8%2Fkkdkml_processed.jpeg&w=3840&q=75)
Transcribed Image Text:3. Use the table below to estimate
[ƒ(2x)+28(x)]dx
by using a Riemann sum with 6 rectangles of equal width
using the right endpoint of ach interval.
X 01/2 1 3/2 2
f(x) 1 2019 3 2020
g(x) 4
3
3
3 2
0
4
2
5/2
5!
1
3
4
1
7/2 4 9/2
Cos
0
1 2023
TU
1
11/2
210
e √2 sin-
12
6
5
√√6
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Similar questions
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)