Use the standard reduction potentials located in the 'Tables' linked above to calculate the equilibrium constant for the reaction: 1₂(s) + 2Ag(s)→→→→→→21 (aq) + 2Ag (aq) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use the OWL references to find the values you may need in this question. Equilibrium constant: AGO for this reaction would be ✓than zero. Use the standard reduction potentials located in the Tables' linked above to calculate the equilibrium constant for the reaction: Ni²+ (aq) + 21 (aq) →→→→ Ni(s) + 1₂(s) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use the OWL references to find the values you may need in this question. Equilibrium constant: AG for this reaction would be than zero.

Chemistry
10th Edition
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Chapter1: Chemical Foundations
Section: Chapter Questions
Problem 1RQ: Define and explain the differences between the following terms. a. law and theory b. theory and...
icon
Related questions
Question
100%

Calculate K (both parts of the question)

Standard Reduction (Electrode) Potentials at 25 °C
Half-Cell Reaction
2 F (aq)
F₂(g) + 2 e
Ce¹(aq) + e
MnO₂ (aq) +8
Cl₂(g) + 2 e
Cr₂0₂² (aq) + 14 H(aq) + 6 e —> 2 Cr³(aq) + 7 H₂0 (1)
0₂(g) + 4 H (aq) + 4e → 2 H₂0 (1)
Br₂ (1) + 2 e
2 Br (aq)
NO₂ (aq) + 4 H*(aq) + 3 e° ——» NO(g) + 2 H₂0 (1)
2 Hg2+ (aq) + 2 eHg₂² (aq)
Ce³+ (aq)
H*(aq) +5 e
2 Cl'(aq)
Hg2+ (aq) + 2e Hg(1)
Ag (aq)+eAg(s)
Hg₂² (aq) +2 e →→→>2 Hg(!)
Fe³+(aq) +e →→→Fe²+ (aq)
1₂ (s) + 2 e →21 (aq)
Fe(CN),(aq) + e > Fe(CN),* (aq)
Cu²+ (aq) +2 e
Cu²+ (aq) +
S(s) + 2 H* (aq) + 2 H₂S(aq)
2 H*(aq) + 2e
Pb²+ (aq) + 2 e
Sn²(aq) + 2 e
Ni²+(aq) +2 e
Co²+ (aq) + 2
Cd²+ (aq) +2 e
Cr²³(aq) + e
Fe²+ (aq) + 2 e
Cr²³(aq) + 3 e
Zn²2(aq) + 2 e
2 H₂O(1) + 2 e
Cu(s)
Cu(aq)
H₂(g)
> Pb(s)
Sn(s)
→→Ni(s)
Mn²* (aq) + 4 H₂0 (1)
Co(s)
Cd (s)
Cr²2 (aq)
→→Fe(s)
→→Cr(s)
Zn(s)
> H₂(g) + 2 OH(aq)
Mn²(aq) + 2e
→→Mn(s)
A1³+ (aq) + 3 e
→→→→Al(s)
Mg2+ (aq) + 2 e Mg(s)
Na (aq) +eNa(s)
K* (aq) +e →→→K(s)
Li (aq) +eLi(s)
Eº (volts)
2.87
1.61
1.51
1.36
1.33
1.229
1.08
0.96
0.920
0.855
0.799
0.789
0.771
0.535
0.48
0.337
0.153
0.14
0.0000
-0.126
-0.14
-0.25
-0.28
-0.403
-0.41
-0.44
-0.74
-0.763
-0.83
-1.18
-1.66
-2.37
-2.714
-2.925
-3.045
Transcribed Image Text:Standard Reduction (Electrode) Potentials at 25 °C Half-Cell Reaction 2 F (aq) F₂(g) + 2 e Ce¹(aq) + e MnO₂ (aq) +8 Cl₂(g) + 2 e Cr₂0₂² (aq) + 14 H(aq) + 6 e —> 2 Cr³(aq) + 7 H₂0 (1) 0₂(g) + 4 H (aq) + 4e → 2 H₂0 (1) Br₂ (1) + 2 e 2 Br (aq) NO₂ (aq) + 4 H*(aq) + 3 e° ——» NO(g) + 2 H₂0 (1) 2 Hg2+ (aq) + 2 eHg₂² (aq) Ce³+ (aq) H*(aq) +5 e 2 Cl'(aq) Hg2+ (aq) + 2e Hg(1) Ag (aq)+eAg(s) Hg₂² (aq) +2 e →→→>2 Hg(!) Fe³+(aq) +e →→→Fe²+ (aq) 1₂ (s) + 2 e →21 (aq) Fe(CN),(aq) + e > Fe(CN),* (aq) Cu²+ (aq) +2 e Cu²+ (aq) + S(s) + 2 H* (aq) + 2 H₂S(aq) 2 H*(aq) + 2e Pb²+ (aq) + 2 e Sn²(aq) + 2 e Ni²+(aq) +2 e Co²+ (aq) + 2 Cd²+ (aq) +2 e Cr²³(aq) + e Fe²+ (aq) + 2 e Cr²³(aq) + 3 e Zn²2(aq) + 2 e 2 H₂O(1) + 2 e Cu(s) Cu(aq) H₂(g) > Pb(s) Sn(s) →→Ni(s) Mn²* (aq) + 4 H₂0 (1) Co(s) Cd (s) Cr²2 (aq) →→Fe(s) →→Cr(s) Zn(s) > H₂(g) + 2 OH(aq) Mn²(aq) + 2e →→Mn(s) A1³+ (aq) + 3 e →→→→Al(s) Mg2+ (aq) + 2 e Mg(s) Na (aq) +eNa(s) K* (aq) +e →→→K(s) Li (aq) +eLi(s) Eº (volts) 2.87 1.61 1.51 1.36 1.33 1.229 1.08 0.96 0.920 0.855 0.799 0.789 0.771 0.535 0.48 0.337 0.153 0.14 0.0000 -0.126 -0.14 -0.25 -0.28 -0.403 -0.41 -0.44 -0.74 -0.763 -0.83 -1.18 -1.66 -2.37 -2.714 -2.925 -3.045
Use the standard reduction potentials located in the 'Tables' linked above to calculate the equilibrium constant for the reaction:
1₂(s) + 2Ag(s)→→→→→21 (aq) + 2Ag+ (aq)
Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use
the OWL references to find the values you may need in this question.
Equilibrium constant:
AGO for this reaction would be
✓than zero.
Use the standard reduction potentials located in the 'Tables' linked above to calculate the equilibrium constant for the reaction:
Ni²+ (aq) + 21 (aq) →→→ Ni(s) + 1₂(s)
Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use
the OWL references to find the values you may need in this question.
Equilibrium constant:
AG for this reaction would be
✓than zero.
Transcribed Image Text:Use the standard reduction potentials located in the 'Tables' linked above to calculate the equilibrium constant for the reaction: 1₂(s) + 2Ag(s)→→→→→21 (aq) + 2Ag+ (aq) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use the OWL references to find the values you may need in this question. Equilibrium constant: AGO for this reaction would be ✓than zero. Use the standard reduction potentials located in the 'Tables' linked above to calculate the equilibrium constant for the reaction: Ni²+ (aq) + 21 (aq) →→→ Ni(s) + 1₂(s) Hint: Carry at least 5 significant figures during intermediate calculations to avoid round off error when taking the antilogarithm. You may use the OWL references to find the values you may need in this question. Equilibrium constant: AG for this reaction would be ✓than zero.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Knowledge Booster
Electrolysis
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Chemistry
Chemistry
Chemistry
ISBN:
9781305957404
Author:
Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:
Cengage Learning
Chemistry
Chemistry
Chemistry
ISBN:
9781259911156
Author:
Raymond Chang Dr., Jason Overby Professor
Publisher:
McGraw-Hill Education
Principles of Instrumental Analysis
Principles of Instrumental Analysis
Chemistry
ISBN:
9781305577213
Author:
Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:
Cengage Learning
Organic Chemistry
Organic Chemistry
Chemistry
ISBN:
9780078021558
Author:
Janice Gorzynski Smith Dr.
Publisher:
McGraw-Hill Education
Chemistry: Principles and Reactions
Chemistry: Principles and Reactions
Chemistry
ISBN:
9781305079373
Author:
William L. Masterton, Cecile N. Hurley
Publisher:
Cengage Learning
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemistry
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY