Use the Squeeze Theorem to show that  lim x→0 x2 cos(16?x) = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
A graphing calculator is recommended.
Use the Squeeze Theorem to show that 
lim x→0 x2 cos(16?x) = 0.
Illustrate by graphing the functions 
f(x) = −x2,
 
g(x) = x2 cos(16?x),
 and 
h(x) = x2
 on the same screen.
Let 
f(x) = −x2, g(x) = x2 cos(16?x),
 and 
h(x) = x2.
 Then 
     ≤ cos(16?x) ≤     
   ⇒   
     ≤ x2 cos(16?x) ≤      .
 Since 
lim x→0 f(x) = lim x→0 h(x) =  ,
 by the Squeeze Theorem we have 
lim x→0 g(x) =  .
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,