Use the Runge-Kutta method to approximate x(0.2) and y(0.2). First use  h = 0.2  and then use  h = 0.1.  (Round your answers to four decimal places.) x' + 4x − y' = 7t x' + y' − 2y = 3t x(0) = 1, y(0) = −2  x(0.2), y(0.2)   ≈              (h = 0.2)  x(0.2), y(0.2)   ≈              (h = 0.1)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use the Runge-Kutta method to approximate x(0.2) and y(0.2). First use 

h = 0.2

 and then use 

h = 0.1.

 (Round your answers to four decimal places.)

x' + 4x − y' = 7t

x' + y' − 2y = 3t

x(0) = 1, y(0) = −2
 
x(0.2), y(0.2)
 
≈ 
 
 
 
 
 
 
(h = 0.2)
 
x(0.2), y(0.2)
 
≈ 
 
 
 
 
 
 
(h = 0.1)
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,