Use the rhombohedral/trigonal metric tensor to show that the relations between the hexagonal (a, c) and rhombohedral (ar, a) lattice parameters are given by the following expressions: a= a√2-2 cos α; c= a√3+6 cos a. a₂ O-GO -1 -2 2a² -a² 0 *-*-*[*][B]-44 a² = \a{ ² = [2 1 1] a² 2a² 0 0 0 a₁-a₂ = a cos a a → -Ar= 3+ a (9) 3 V 18 2a²-a² ***** a a= [2 1 1] -a² 2a² 0 0 0 cos a = 1- 2c² 9 2(c/a)² +6 0 2c² Homework: a = a,√2-2 cos α; c = a√3+6 cos α.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the rhombohedral/trigonal metric tensor to show that the relations between
the hexagonal (a, c) and rhombohedral (ar, a) lattice parameters are given by the following
expressions:
a= a√2-2 cos a;
c = a√3+6 cos a.
0-G400
a² = |a₁|²
aa = a co a
2
=
1 1]
→ar =
cos α = 1
a
3 V
18
2a²-a²
1² 2a²
0
0
3+
2a² -a²
***
a a [21 -a² 2a² 0
0 0 2c²
20-$+$
=
9
2(c/a)² +6
2c²
0
Homework:
9
a = a√2-2 cosa;
c = a√3+6 cos a.
Transcribed Image Text:Use the rhombohedral/trigonal metric tensor to show that the relations between the hexagonal (a, c) and rhombohedral (ar, a) lattice parameters are given by the following expressions: a= a√2-2 cos a; c = a√3+6 cos a. 0-G400 a² = |a₁|² aa = a co a 2 = 1 1] →ar = cos α = 1 a 3 V 18 2a²-a² 1² 2a² 0 0 3+ 2a² -a² *** a a [21 -a² 2a² 0 0 0 2c² 20-$+$ = 9 2(c/a)² +6 2c² 0 Homework: 9 a = a√2-2 cosa; c = a√3+6 cos a.
Expert Solution
steps

Step by step

Solved in 5 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,