Use the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the zeros to factor f over the real numbers. 2 f(x)=2x3-3x2+6x-9. A) 9; f(x) = (x-9)(2x² + 1). C) -3, -1, 2; f(x) = (2x − 3)(x + 1)(x + 3) B) 3, 2, 1; f(x) = (2x − 3)(x − 1)(x – 3) D) —; f(x) = (2x − 3)(x² + 3)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Question
Use the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the zeros to factor \( f \) over the real numbers.

\( f(x) = 2x^3 - 3x^2 + 6x - 9 \)

A) \( 9 \); \( f(x) = (x - 9)(2x^2 + 1) \)

B) \( 3, \frac{3}{2}, 1 \); \( f(x) = (2x - 3)(x - 1)(x - 3) \)

C) \(-3, -1, \frac{3}{2} \); \( f(x) = (2x - 3)(x + 1)(x + 3) \)

D) \( \frac{3}{2} \); \( f(x) = (2x - 3)(x^2 + 3) \)
Transcribed Image Text:Use the Rational Zeros Theorem to find all the real zeros of the polynomial function. Use the zeros to factor \( f \) over the real numbers. \( f(x) = 2x^3 - 3x^2 + 6x - 9 \) A) \( 9 \); \( f(x) = (x - 9)(2x^2 + 1) \) B) \( 3, \frac{3}{2}, 1 \); \( f(x) = (2x - 3)(x - 1)(x - 3) \) C) \(-3, -1, \frac{3}{2} \); \( f(x) = (2x - 3)(x + 1)(x + 3) \) D) \( \frac{3}{2} \); \( f(x) = (2x - 3)(x^2 + 3) \)
Expert Solution
steps

Step by step

Solved in 4 steps with 3 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,