Use the properties of logarithms to expand each expression in terms of simpler logarithms. Assume that all variable expressions denote positive numbers. 13. | 45 36, log ()- log ( - log ( atb 7, 49 nction )- log ( 15ac,
Use the properties of logarithms to expand each expression in terms of simpler logarithms. Assume that all variable expressions denote positive numbers. 13. | 45 36, log ()- log ( - log ( atb 7, 49 nction )- log ( 15ac,
Algebra and Trigonometry (6th Edition)
6th Edition
ISBN:9780134463216
Author:Robert F. Blitzer
Publisher:Robert F. Blitzer
ChapterP: Prerequisites: Fundamental Concepts Of Algebra
Section: Chapter Questions
Problem 1MCCP: In Exercises 1-25, simplify the given expression or perform the indicated operation (and simplify,...
Related questions
Question
![**Expanding Logarithmic Expressions**
Use the properties of logarithms to expand each expression in terms of simpler logarithms. Assume that all variable expressions denote positive numbers.
Expression:
\[
\log \left( \frac{a^5 \sqrt{b}}{a+b} \right) = \underline{\quad} \cdot \log(\phantom{x}) + \underline{\quad} \cdot \log(\phantom{x}) - \log(\phantom{x})
\]
**Answers**
| Step | Answer |
|------|--------|
| 1 | - |
| 2 | - |
| 3 | - |
| 4 | - |
**Instructions and Explanation:**
1. Identify the expression inside the log and break it into factors.
2. Apply the logarithm power rule: \(\log(x^n) = n \cdot \log(x)\).
3. Apply the logarithm product rule: \(\log(x \cdot y) = \log(x) + \log(y)\).
4. Apply the logarithm quotient rule: \(\log\left(\frac{x}{y}\right) = \log(x) - \log(y)\).
Fill out the blanks with the appropriate expressions using these rules. Remember to adjust exponents when applying the power rule and ensure all variable expressions remain positive.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F7269c65d-b7b5-4fbf-8945-da94b0914ae2%2F7a5fb772-ead6-431e-bff1-344af7ea41e2%2F84u69bq_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Expanding Logarithmic Expressions**
Use the properties of logarithms to expand each expression in terms of simpler logarithms. Assume that all variable expressions denote positive numbers.
Expression:
\[
\log \left( \frac{a^5 \sqrt{b}}{a+b} \right) = \underline{\quad} \cdot \log(\phantom{x}) + \underline{\quad} \cdot \log(\phantom{x}) - \log(\phantom{x})
\]
**Answers**
| Step | Answer |
|------|--------|
| 1 | - |
| 2 | - |
| 3 | - |
| 4 | - |
**Instructions and Explanation:**
1. Identify the expression inside the log and break it into factors.
2. Apply the logarithm power rule: \(\log(x^n) = n \cdot \log(x)\).
3. Apply the logarithm product rule: \(\log(x \cdot y) = \log(x) + \log(y)\).
4. Apply the logarithm quotient rule: \(\log\left(\frac{x}{y}\right) = \log(x) - \log(y)\).
Fill out the blanks with the appropriate expressions using these rules. Remember to adjust exponents when applying the power rule and ensure all variable expressions remain positive.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images

Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Recommended textbooks for you

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra and Trigonometry (6th Edition)
Algebra
ISBN:
9780134463216
Author:
Robert F. Blitzer
Publisher:
PEARSON

Contemporary Abstract Algebra
Algebra
ISBN:
9781305657960
Author:
Joseph Gallian
Publisher:
Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:
9781285463247
Author:
David Poole
Publisher:
Cengage Learning

Algebra And Trigonometry (11th Edition)
Algebra
ISBN:
9780135163078
Author:
Michael Sullivan
Publisher:
PEARSON

Introduction to Linear Algebra, Fifth Edition
Algebra
ISBN:
9780980232776
Author:
Gilbert Strang
Publisher:
Wellesley-Cambridge Press

College Algebra (Collegiate Math)
Algebra
ISBN:
9780077836344
Author:
Julie Miller, Donna Gerken
Publisher:
McGraw-Hill Education