Use the properties of logarithms to exapnd the logarithm as much as possible: 4 log5 ພາ2 x4y³

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
Please show all steps
**Transcription for Educational Website:**

---

**Instruction:**

Use the properties of logarithms to expand the logarithm as much as possible:

\[
4 \log_5 \left( \sqrt[5]{\frac{w^2}{x^4 y^3}} \right)
\]

---

**Step-by-step Expansion:**

1. **Start with the given expression:**

   \[
   4 \log_5 \left( \sqrt[5]{\frac{w^2}{x^4 y^3}} \right)
   \]

2. **Apply the root property of logarithms**: 

   Convert the fifth root to a power of \(\frac{1}{5}\):

   \[
   4 \log_5 \left( \left(\frac{w^2}{x^4 y^3}\right)^{\frac{1}{5}} \right)
   \]

3. **Use the power rule of logarithms**:

   Bring down the exponent \(\frac{1}{5}\):

   \[
   4 \cdot \frac{1}{5} \log_5 \left(\frac{w^2}{x^4 y^3}\right)
   \]

   Simplify the constant multiplication:

   \[
   \frac{4}{5} \log_5 \left(\frac{w^2}{x^4 y^3}\right)
   \]

4. **Apply the quotient rule of logarithms**:

   Expand using the logarithm of a quotient:

   \[
   \frac{4}{5} \left(\log_5 (w^2) - \log_5 (x^4 y^3)\right)
   \]

5. **Further expand using the product rule of logarithms**:

   Separate the logarithm of the product:

   \[
   \frac{4}{5} \left(\log_5 (w^2) - (\log_5 (x^4) + \log_5 (y^3))\right)
   \]

6. **Apply the power rule of logarithms to each term**:

   \[
   \frac{4}{5} \left(2 \log_5 (w) - (4 \log_5 (x) + 3 \log_5 (y))\right)
   \
Transcribed Image Text:**Transcription for Educational Website:** --- **Instruction:** Use the properties of logarithms to expand the logarithm as much as possible: \[ 4 \log_5 \left( \sqrt[5]{\frac{w^2}{x^4 y^3}} \right) \] --- **Step-by-step Expansion:** 1. **Start with the given expression:** \[ 4 \log_5 \left( \sqrt[5]{\frac{w^2}{x^4 y^3}} \right) \] 2. **Apply the root property of logarithms**: Convert the fifth root to a power of \(\frac{1}{5}\): \[ 4 \log_5 \left( \left(\frac{w^2}{x^4 y^3}\right)^{\frac{1}{5}} \right) \] 3. **Use the power rule of logarithms**: Bring down the exponent \(\frac{1}{5}\): \[ 4 \cdot \frac{1}{5} \log_5 \left(\frac{w^2}{x^4 y^3}\right) \] Simplify the constant multiplication: \[ \frac{4}{5} \log_5 \left(\frac{w^2}{x^4 y^3}\right) \] 4. **Apply the quotient rule of logarithms**: Expand using the logarithm of a quotient: \[ \frac{4}{5} \left(\log_5 (w^2) - \log_5 (x^4 y^3)\right) \] 5. **Further expand using the product rule of logarithms**: Separate the logarithm of the product: \[ \frac{4}{5} \left(\log_5 (w^2) - (\log_5 (x^4) + \log_5 (y^3))\right) \] 6. **Apply the power rule of logarithms to each term**: \[ \frac{4}{5} \left(2 \log_5 (w) - (4 \log_5 (x) + 3 \log_5 (y))\right) \
Expert Solution
Step 1

Calculus homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning