Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
Related questions
Question
![**Title: Understanding Isosceles Triangles**
**Topic: Using the Properties of Isosceles Triangles to Calculate Angles**
**Example Problem:**
**Instruction:**
Use the properties of isosceles and other triangles to find the indicated angle.
**Problem 11: Find \( m\angle ACB \)**
**Diagram Description:**
The diagram illustrates triangle \( \triangle ABC \) with an isosceles triangle \( \triangle ADC \).
- Vertex \( A \) is the common point of the two triangles.
- \( \angle ADC \) is marked as 45°.
- Side \( AD \) is congruent to side \( AC \), which means \(\triangle ADC\) is isosceles.
- Point \( B \) is connected to \( C \), forming segment \( BC \).
**Solution Explanation:**
1. **Identify the Isosceles Triangle:**
Since \( AD = AC \), triangle \( \triangle ADC \) is isosceles. This implies that angles \( \angle DAC \) and \( \angle ACD \) are equal.
2. **Use Known Angles:**
We know \( \angle ADC = 45^\circ \).
3. **Calculate \( \angle DAC \) and \( \angle ACD \):**
In an isosceles triangle, the sum of the angles is always 180°. Therefore,
\[
\angle DAC + \angle ACD + \angle ADC = 180^\circ
\]
\[
\angle DAC + \angle DAC + 45^\circ = 180^\circ
\]
\[
2(\angle DAC) = 135^\circ
\]
\[
\angle DAC = \angle ACD = 67.5^\circ
\]
4. **Conclusion:**
\( m\angle ACB = \angle ACD = 67.5^\circ \).
This exercise demonstrates how to utilize the properties of isosceles triangles to determine unknown angles, a crucial skill in geometry.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F58eb46de-95f3-41c1-9329-93ec514644b2%2F24386718-82af-438f-98a2-92181df2eea8%2F3x2o1ot_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Title: Understanding Isosceles Triangles**
**Topic: Using the Properties of Isosceles Triangles to Calculate Angles**
**Example Problem:**
**Instruction:**
Use the properties of isosceles and other triangles to find the indicated angle.
**Problem 11: Find \( m\angle ACB \)**
**Diagram Description:**
The diagram illustrates triangle \( \triangle ABC \) with an isosceles triangle \( \triangle ADC \).
- Vertex \( A \) is the common point of the two triangles.
- \( \angle ADC \) is marked as 45°.
- Side \( AD \) is congruent to side \( AC \), which means \(\triangle ADC\) is isosceles.
- Point \( B \) is connected to \( C \), forming segment \( BC \).
**Solution Explanation:**
1. **Identify the Isosceles Triangle:**
Since \( AD = AC \), triangle \( \triangle ADC \) is isosceles. This implies that angles \( \angle DAC \) and \( \angle ACD \) are equal.
2. **Use Known Angles:**
We know \( \angle ADC = 45^\circ \).
3. **Calculate \( \angle DAC \) and \( \angle ACD \):**
In an isosceles triangle, the sum of the angles is always 180°. Therefore,
\[
\angle DAC + \angle ACD + \angle ADC = 180^\circ
\]
\[
\angle DAC + \angle DAC + 45^\circ = 180^\circ
\]
\[
2(\angle DAC) = 135^\circ
\]
\[
\angle DAC = \angle ACD = 67.5^\circ
\]
4. **Conclusion:**
\( m\angle ACB = \angle ACD = 67.5^\circ \).
This exercise demonstrates how to utilize the properties of isosceles triangles to determine unknown angles, a crucial skill in geometry.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
I am going to solve the given problem by using some simple geometry to get the required result.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning
![Elementary Geometry For College Students, 7e](https://www.bartleby.com/isbn_cover_images/9781337614085/9781337614085_smallCoverImage.jpg)
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
![Elementary Geometry for College Students](https://www.bartleby.com/isbn_cover_images/9781285195698/9781285195698_smallCoverImage.gif)
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning