Use the product rule to find the derivative of the following. y = (x + 5) (5/x +9) y' =D

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
4.2 #4 I need the answer
**Problem Statement:**

Use the product rule to find the derivative of the following.

\[ y = (x + 5)\left(5\sqrt{x} + 9\right) \]

**Solution:**

To find the derivative \( y' \), we will apply the product rule. The product rule states that if \( y = u(x) \cdot v(x) \), then the derivative \( y' = u'(x) \cdot v(x) + u(x) \cdot v'(x) \).

Let:
- \( u(x) = x + 5 \)
- \( v(x) = 5\sqrt{x} + 9 \)

**Steps:**

1. **Find \( u'(x) \):**
   - \( u(x) = x + 5 \)
   - Derivative: \( u'(x) = 1 \)

2. **Find \( v'(x) \):**
   - \( v(x) = 5\sqrt{x} + 9 = 5x^{1/2} + 9 \)
   - Derivative: \( v'(x) = \frac{5}{2}x^{-1/2} = \frac{5}{2\sqrt{x}} \)

3. **Apply the product rule:**
   - \( y' = u'(x)v(x) + u(x)v'(x) \)
   - Substitute the values:
     \[
     y' = 1 \cdot (5\sqrt{x} + 9) + (x + 5) \cdot \frac{5}{2\sqrt{x}}
     \]
   - Simplifying further gives:
     \[
     y' = 5\sqrt{x} + 9 + \frac{5(x + 5)}{2\sqrt{x}}
     \]

**Conclusion:**

The derivative \( y' \) of the function \( y = (x + 5)(5\sqrt{x} + 9) \) using the product rule is:

\[ y' = 5\sqrt{x} + 9 + \frac{5(x + 5)}{2\sqrt{x}} \]
Transcribed Image Text:**Problem Statement:** Use the product rule to find the derivative of the following. \[ y = (x + 5)\left(5\sqrt{x} + 9\right) \] **Solution:** To find the derivative \( y' \), we will apply the product rule. The product rule states that if \( y = u(x) \cdot v(x) \), then the derivative \( y' = u'(x) \cdot v(x) + u(x) \cdot v'(x) \). Let: - \( u(x) = x + 5 \) - \( v(x) = 5\sqrt{x} + 9 \) **Steps:** 1. **Find \( u'(x) \):** - \( u(x) = x + 5 \) - Derivative: \( u'(x) = 1 \) 2. **Find \( v'(x) \):** - \( v(x) = 5\sqrt{x} + 9 = 5x^{1/2} + 9 \) - Derivative: \( v'(x) = \frac{5}{2}x^{-1/2} = \frac{5}{2\sqrt{x}} \) 3. **Apply the product rule:** - \( y' = u'(x)v(x) + u(x)v'(x) \) - Substitute the values: \[ y' = 1 \cdot (5\sqrt{x} + 9) + (x + 5) \cdot \frac{5}{2\sqrt{x}} \] - Simplifying further gives: \[ y' = 5\sqrt{x} + 9 + \frac{5(x + 5)}{2\sqrt{x}} \] **Conclusion:** The derivative \( y' \) of the function \( y = (x + 5)(5\sqrt{x} + 9) \) using the product rule is: \[ y' = 5\sqrt{x} + 9 + \frac{5(x + 5)}{2\sqrt{x}} \]
Expert Solution
Step 1

We have to find

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning