Use the procedure in Example 8 in Section 6.2 to find two power series solutions of the given differential equation about the ordinary point x = 0. y' + e'y' – y = 0 1,3 ܐ ܐܨܐ ܀ Oy=1+ Oy, =1+ 2 Oy =1+ 2 ܐ ܀ ܐ1 ܐ ܐ ܐ ܐ ܡܕܩ ܕܕܢܨ … + ܟ ܕܡܐ ܕ ܕ y .. - ܐܐܐܐ ܥܡܐ ܟܥܫܐX + ܢ -Oy: = 1-x Oy:=1+_x+x + 2 and y2 - X - 3 and y, = x + and y, = x - and y2 - X - +ܐ and y2 = x 4 ܐܨܐ ܐܐ + 13 4 + + - 6 9 + 1x2 + 1x³ + 9 - 1 24 1 24 1 16 1 16

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the procedure in Example 8 in Section 6.2 to find two power series solutions of the given differential equation about the ordinary point x = 0.
y' + e'y' – y = 0
1,3
ܐ ܐܨܐ ܀
Oy=1+
Oy, =1+
2
Oy =1+
2
ܠܐܕܐܐܨܐ+Oy
+
+
.…
and y2 - X -
and y, = x +
Oy:=1+_x+x +
2
3
and y, = x -
+ܐ
4
ܡܐ ܠܨ-xܕx- + y+1-:0
ܕܨܐ
y2 X
+ 13
and y2 = x
6
+
ܟܛܚ ܕ - -x- ܕOy -1- o- 3 - .… and y
ܐܐܐܐ
4
9
1
24
-
9
1
24
ܐ ܐ ܐ x- + .…
1
16
1x2 + 1x³ + 1
16
Transcribed Image Text:Use the procedure in Example 8 in Section 6.2 to find two power series solutions of the given differential equation about the ordinary point x = 0. y' + e'y' – y = 0 1,3 ܐ ܐܨܐ ܀ Oy=1+ Oy, =1+ 2 Oy =1+ 2 ܠܐܕܐܐܨܐ+Oy + + .… and y2 - X - and y, = x + Oy:=1+_x+x + 2 3 and y, = x - +ܐ 4 ܡܐ ܠܨ-xܕx- + y+1-:0 ܕܨܐ y2 X + 13 and y2 = x 6 + ܟܛܚ ܕ - -x- ܕOy -1- o- 3 - .… and y ܐܐܐܐ 4 9 1 24 - 9 1 24 ܐ ܐ ܐ x- + .… 1 16 1x2 + 1x³ + 1 16
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,