Use the Peng-Robinson equation of state to determine the volume of 3 moles of ethane gas at 298 K and 5 atm. For ethane, Tc = 305.32 K, Pc = 4.872 MPa, and = 0.0995. a(T) V-b ᎡᎢ . V=²+b P P (V+eb)(V+ob) Eq. of state a(Tr) O € Ω Y 0.42748 -1/2 RK (1949) 1 0 0.08664 SRK (1972) OSRK(T; 0)* 1 0 0.08664 0.42748 PR (1976) OPR(Tr; 0) 1+√2 1-√2 0.07780 0.45724 *Smith, Van Ness, and Abbott, Introduction to Chemical Engineering Ther- modynamics, 7th ed., p. 98, McGraw-Hill, New York (2005). OSRK (Tr; 0) = [1 + (0.480 + 1.5740 - 0.176m²) (1 - T₁¹/2²)]² OPR (T; 0) = [1 + (0.37464 + 1.542260 -0.26992²) (1 - T,¹²)]² - a(T) = y X(T)R²T² Pe ᎡᎢ . с b= Ω Pe

Introduction to Chemical Engineering Thermodynamics
8th Edition
ISBN:9781259696527
Author:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Chapter1: Introduction
Section: Chapter Questions
Problem 1.1P
icon
Related questions
Question
Use the Peng-Robinson equation of state to determine the volume of 3 moles of ethane gas
at 298 K and 5 atm. For ethane, Tc = 305.32 K, Pc = 4.872 MPa, and = 0.0995.
ᎡᎢ
a(T)
V-b
V =
+b-
P
P (V+eb) (V+ ob)
α(T₁)R²T²
Pe
RT
b=2
P
Eq. of state
a(Tr.)
O
€
Ω
Y
RK (1949)
T-1/2
1
0
0.08664
0.42748
SRK (1972)
OSRK(Tr; 0)
1
0
0.08664
0.42748
PR (1976)
OPR(Tr; 0)*
1+√₂ 1-√₂
0.07780
0.45724
*Smith, Van Ness, and Abbott, Introduction to Chemical Engineering Ther-
modynamics, 7th ed., p. 98, McGraw-Hill, New York (2005).
a SRK (Tr; @0) = [1 + (0.480 + 1.5740 - 0.176²) (1 - T‚,¹²)]²
OPR (T; 0) = [1 + (0.37464 + 1.54226w - 0.26992@²) (1 – T₂¹/²)]²
a(T) = y₁
C
Transcribed Image Text:Use the Peng-Robinson equation of state to determine the volume of 3 moles of ethane gas at 298 K and 5 atm. For ethane, Tc = 305.32 K, Pc = 4.872 MPa, and = 0.0995. ᎡᎢ a(T) V-b V = +b- P P (V+eb) (V+ ob) α(T₁)R²T² Pe RT b=2 P Eq. of state a(Tr.) O € Ω Y RK (1949) T-1/2 1 0 0.08664 0.42748 SRK (1972) OSRK(Tr; 0) 1 0 0.08664 0.42748 PR (1976) OPR(Tr; 0)* 1+√₂ 1-√₂ 0.07780 0.45724 *Smith, Van Ness, and Abbott, Introduction to Chemical Engineering Ther- modynamics, 7th ed., p. 98, McGraw-Hill, New York (2005). a SRK (Tr; @0) = [1 + (0.480 + 1.5740 - 0.176²) (1 - T‚,¹²)]² OPR (T; 0) = [1 + (0.37464 + 1.54226w - 0.26992@²) (1 – T₂¹/²)]² a(T) = y₁ C
Expert Solution
steps

Step by step

Solved in 2 steps with 5 images

Blurred answer
Similar questions
Recommended textbooks for you
Introduction to Chemical Engineering Thermodynami…
Introduction to Chemical Engineering Thermodynami…
Chemical Engineering
ISBN:
9781259696527
Author:
J.M. Smith Termodinamica en ingenieria quimica, Hendrick C Van Ness, Michael Abbott, Mark Swihart
Publisher:
McGraw-Hill Education
Elementary Principles of Chemical Processes, Bind…
Elementary Principles of Chemical Processes, Bind…
Chemical Engineering
ISBN:
9781118431221
Author:
Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:
WILEY
Elements of Chemical Reaction Engineering (5th Ed…
Elements of Chemical Reaction Engineering (5th Ed…
Chemical Engineering
ISBN:
9780133887518
Author:
H. Scott Fogler
Publisher:
Prentice Hall
Process Dynamics and Control, 4e
Process Dynamics and Control, 4e
Chemical Engineering
ISBN:
9781119285915
Author:
Seborg
Publisher:
WILEY
Industrial Plastics: Theory and Applications
Industrial Plastics: Theory and Applications
Chemical Engineering
ISBN:
9781285061238
Author:
Lokensgard, Erik
Publisher:
Delmar Cengage Learning
Unit Operations of Chemical Engineering
Unit Operations of Chemical Engineering
Chemical Engineering
ISBN:
9780072848236
Author:
Warren McCabe, Julian C. Smith, Peter Harriott
Publisher:
McGraw-Hill Companies, The