Use the method of variation of parameters to solve the initial value problem x'=Ax+ f(t), x(a) = x₂ using the following values. 9 -3 36t 1+ 3t 9t ^-[ :-)--[*]-[:]-*-[*** .-*] A = x(0) 3 -1 6t t 1-3t x(t) = f(t): At V

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
---

### Solving the Initial Value Problem using Variation of Parameters

To solve the initial value problem \( \mathbf{x}' = A\mathbf{x} + \mathbf{f}(t) \), \( \mathbf{x}(a) = \mathbf{x}_a \), using the given values, follow these steps.

#### Given Matrices and Initial Conditions:

**Matrix A:**  
\[ A = \begin{bmatrix} 9 & -3 \\ 3 & -1 \end{bmatrix} \]

**Function \( \mathbf{f}(t) \):**  
\[ \mathbf{f}(t) = \begin{bmatrix} 36t^2 \\ 6t \end{bmatrix} \]

**Initial Condition:**  
\[ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]

**Exponential Matrix \( e^{At} \):**  
\[ e^{At} = \begin{bmatrix} 1 + 3t & -9t \\ t & 1 - 3t \end{bmatrix} \]

#### Objective:
\( \mathbf{x}(t) = \) \(\boxed{\quad}\)

---

### Explanation:

1. **Understand the Problem:**
   - The problem involves a system of linear differential equations described by \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \).
   - The method of variation of parameters will be used to find the particular solution of this non-homogeneous equation.

2. **Initial Conditions and Matrices:**
   - The initial value provided is \( \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), which means at \( t = 0 \), the state vector \(\mathbf{x}\) is zero.
   - The function \( \mathbf{f}(t) \) provides the time-variant input to the system.
   - The matrix exponential \( e^{At} \) represents the solution to the homogeneous part of the differential equation.

3. **Steps to Solve:**
   - **Step 1:** Solve the homogeneous equation \( \mathbf{x}_h'(t) = A \mathbf{x}_h(t) \) using the given \( e^{At} \).
   - **Step 2:** Find the particular solution \(
Transcribed Image Text:--- ### Solving the Initial Value Problem using Variation of Parameters To solve the initial value problem \( \mathbf{x}' = A\mathbf{x} + \mathbf{f}(t) \), \( \mathbf{x}(a) = \mathbf{x}_a \), using the given values, follow these steps. #### Given Matrices and Initial Conditions: **Matrix A:** \[ A = \begin{bmatrix} 9 & -3 \\ 3 & -1 \end{bmatrix} \] **Function \( \mathbf{f}(t) \):** \[ \mathbf{f}(t) = \begin{bmatrix} 36t^2 \\ 6t \end{bmatrix} \] **Initial Condition:** \[ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \] **Exponential Matrix \( e^{At} \):** \[ e^{At} = \begin{bmatrix} 1 + 3t & -9t \\ t & 1 - 3t \end{bmatrix} \] #### Objective: \( \mathbf{x}(t) = \) \(\boxed{\quad}\) --- ### Explanation: 1. **Understand the Problem:** - The problem involves a system of linear differential equations described by \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \). - The method of variation of parameters will be used to find the particular solution of this non-homogeneous equation. 2. **Initial Conditions and Matrices:** - The initial value provided is \( \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), which means at \( t = 0 \), the state vector \(\mathbf{x}\) is zero. - The function \( \mathbf{f}(t) \) provides the time-variant input to the system. - The matrix exponential \( e^{At} \) represents the solution to the homogeneous part of the differential equation. 3. **Steps to Solve:** - **Step 1:** Solve the homogeneous equation \( \mathbf{x}_h'(t) = A \mathbf{x}_h(t) \) using the given \( e^{At} \). - **Step 2:** Find the particular solution \(
Expert Solution
steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,