Use the method of variation of parameters to solve the initial value problem x'=Ax+ f(t), x(a) = x₂ using the following values. 9 -3 36t 1+ 3t 9t ^-[ :-)--[*]-[:]-*-[*** .-*] A = x(0) 3 -1 6t t 1-3t x(t) = f(t): At V
Use the method of variation of parameters to solve the initial value problem x'=Ax+ f(t), x(a) = x₂ using the following values. 9 -3 36t 1+ 3t 9t ^-[ :-)--[*]-[:]-*-[*** .-*] A = x(0) 3 -1 6t t 1-3t x(t) = f(t): At V
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![---
### Solving the Initial Value Problem using Variation of Parameters
To solve the initial value problem \( \mathbf{x}' = A\mathbf{x} + \mathbf{f}(t) \), \( \mathbf{x}(a) = \mathbf{x}_a \), using the given values, follow these steps.
#### Given Matrices and Initial Conditions:
**Matrix A:**
\[ A = \begin{bmatrix} 9 & -3 \\ 3 & -1 \end{bmatrix} \]
**Function \( \mathbf{f}(t) \):**
\[ \mathbf{f}(t) = \begin{bmatrix} 36t^2 \\ 6t \end{bmatrix} \]
**Initial Condition:**
\[ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
**Exponential Matrix \( e^{At} \):**
\[ e^{At} = \begin{bmatrix} 1 + 3t & -9t \\ t & 1 - 3t \end{bmatrix} \]
#### Objective:
\( \mathbf{x}(t) = \) \(\boxed{\quad}\)
---
### Explanation:
1. **Understand the Problem:**
- The problem involves a system of linear differential equations described by \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \).
- The method of variation of parameters will be used to find the particular solution of this non-homogeneous equation.
2. **Initial Conditions and Matrices:**
- The initial value provided is \( \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), which means at \( t = 0 \), the state vector \(\mathbf{x}\) is zero.
- The function \( \mathbf{f}(t) \) provides the time-variant input to the system.
- The matrix exponential \( e^{At} \) represents the solution to the homogeneous part of the differential equation.
3. **Steps to Solve:**
- **Step 1:** Solve the homogeneous equation \( \mathbf{x}_h'(t) = A \mathbf{x}_h(t) \) using the given \( e^{At} \).
- **Step 2:** Find the particular solution \(](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F896deee6-4ebc-4afd-8502-502eb7aa6712%2F9f975d06-698a-4188-992c-9b8b61bf8d6e%2Fq4ay40q_processed.png&w=3840&q=75)
Transcribed Image Text:---
### Solving the Initial Value Problem using Variation of Parameters
To solve the initial value problem \( \mathbf{x}' = A\mathbf{x} + \mathbf{f}(t) \), \( \mathbf{x}(a) = \mathbf{x}_a \), using the given values, follow these steps.
#### Given Matrices and Initial Conditions:
**Matrix A:**
\[ A = \begin{bmatrix} 9 & -3 \\ 3 & -1 \end{bmatrix} \]
**Function \( \mathbf{f}(t) \):**
\[ \mathbf{f}(t) = \begin{bmatrix} 36t^2 \\ 6t \end{bmatrix} \]
**Initial Condition:**
\[ \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \]
**Exponential Matrix \( e^{At} \):**
\[ e^{At} = \begin{bmatrix} 1 + 3t & -9t \\ t & 1 - 3t \end{bmatrix} \]
#### Objective:
\( \mathbf{x}(t) = \) \(\boxed{\quad}\)
---
### Explanation:
1. **Understand the Problem:**
- The problem involves a system of linear differential equations described by \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \).
- The method of variation of parameters will be used to find the particular solution of this non-homogeneous equation.
2. **Initial Conditions and Matrices:**
- The initial value provided is \( \mathbf{x}(0) = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \), which means at \( t = 0 \), the state vector \(\mathbf{x}\) is zero.
- The function \( \mathbf{f}(t) \) provides the time-variant input to the system.
- The matrix exponential \( e^{At} \) represents the solution to the homogeneous part of the differential equation.
3. **Steps to Solve:**
- **Step 1:** Solve the homogeneous equation \( \mathbf{x}_h'(t) = A \mathbf{x}_h(t) \) using the given \( e^{At} \).
- **Step 2:** Find the particular solution \(
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)