Use the method of variation of parameters to solve the initial value problem x' = Ax+f(t), x(a) = x using the following values. 4 -5 12 0 1 A = - e¯t + 5e³t 5e¯t - 5e3t f(t) = x(0) = 1-2 24 0 4 -ete³t 5et-e3t 12e3t-3e-t x(t) = 24e3-6e-t
Use the method of variation of parameters to solve the initial value problem x' = Ax+f(t), x(a) = x using the following values. 4 -5 12 0 1 A = - e¯t + 5e³t 5e¯t - 5e3t f(t) = x(0) = 1-2 24 0 4 -ete³t 5et-e3t 12e3t-3e-t x(t) = 24e3-6e-t
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Use the method of variation of parameters to solve the initial value problem x' = Ax+f(t), x(a) = x using the following values.
4
-5
12
0
1
A =
- e¯t + 5e³t 5e¯t - 5e3t
f(t) =
x(0) =
1-2
24
0
4
-ete³t 5et-e3t
12e3t-3e-t
x(t) =
24e3-6e-t](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F5e41ba2e-4779-4103-a73a-3bad1e7e26b7%2F1d5793b6-24e9-48a4-afa1-8b2ee24a67f0%2Fyzw5okd_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Use the method of variation of parameters to solve the initial value problem x' = Ax+f(t), x(a) = x using the following values.
4
-5
12
0
1
A =
- e¯t + 5e³t 5e¯t - 5e3t
f(t) =
x(0) =
1-2
24
0
4
-ete³t 5et-e3t
12e3t-3e-t
x(t) =
24e3-6e-t
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 5 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)