Use the method of variation of parameters to solve the initial value problem x' = Ax + f(t), (a)=x₂ using the following values. ^ [:)]~-~-~-[*] A = x(0)= e At 2 4 1 16 4 f(t): --8-8-8 =(t) = + 2 5 2 1 + 4t -t 16t 1-4t

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%
**Solving an Initial Value Problem with Variation of Parameters**

To solve the initial value problem \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \), with the condition \(\mathbf{x}(a) = \mathbf{x}_a\), we will use the method of variation of parameters and the following values:

**Matrix \( A \):**
\[
A = \begin{bmatrix} 
4 & -1 \\ 
16 & -4 
\end{bmatrix}
\]

**Function \( \mathbf{f}(t) \):**
\[
\mathbf{f}(t) = \begin{bmatrix} 
5 \\ 
2 
\end{bmatrix}
\]

**Initial Condition \( \mathbf{x}(0) \):**
\[
\mathbf{x}(0) = \begin{bmatrix} 
8 \\ 
2 
\end{bmatrix}
\]

**Exponential Matrix \( e^{At} \):**
\[
e^{At} = \begin{bmatrix} 
1 + 4t & -t \\ 
16t & 1 - 4t 
\end{bmatrix}
\]

The solution for \( \mathbf{x}(t) \) is represented as:

**General Solution for \( \mathbf{x}(t) \):**
\[
\mathbf{x}(t) = \begin{bmatrix} 
8 \\ 
2 
\end{bmatrix} 
+ 
\begin{bmatrix} 
\blacksquare \\ 
\blacksquare 
\end{bmatrix} 
t 
+ 
\begin{bmatrix} 
\blacksquare \\ 
\blacksquare 
\end{bmatrix} 
t^2
\]

**Explanation of the Components:**

- **Matrix \( A \):** The system matrix that defines the linear part of the differential equation.
- **Function \( \mathbf{f}(t) \):** The non-homogeneous part, providing external input.
- **Initial Condition \( \mathbf{x}(0) \):** The state of the system at \( t = 0 \).
- **Exponential Matrix \( e^{At} \):** Describes the system's homogeneous solution over time.
- **General Solution \( \mathbf{x}(t) \):** Combines the homogeneous and particular solutions to meet the initial condition.

The solution involves
Transcribed Image Text:**Solving an Initial Value Problem with Variation of Parameters** To solve the initial value problem \( \mathbf{x}' = A \mathbf{x} + \mathbf{f}(t) \), with the condition \(\mathbf{x}(a) = \mathbf{x}_a\), we will use the method of variation of parameters and the following values: **Matrix \( A \):** \[ A = \begin{bmatrix} 4 & -1 \\ 16 & -4 \end{bmatrix} \] **Function \( \mathbf{f}(t) \):** \[ \mathbf{f}(t) = \begin{bmatrix} 5 \\ 2 \end{bmatrix} \] **Initial Condition \( \mathbf{x}(0) \):** \[ \mathbf{x}(0) = \begin{bmatrix} 8 \\ 2 \end{bmatrix} \] **Exponential Matrix \( e^{At} \):** \[ e^{At} = \begin{bmatrix} 1 + 4t & -t \\ 16t & 1 - 4t \end{bmatrix} \] The solution for \( \mathbf{x}(t) \) is represented as: **General Solution for \( \mathbf{x}(t) \):** \[ \mathbf{x}(t) = \begin{bmatrix} 8 \\ 2 \end{bmatrix} + \begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix} t + \begin{bmatrix} \blacksquare \\ \blacksquare \end{bmatrix} t^2 \] **Explanation of the Components:** - **Matrix \( A \):** The system matrix that defines the linear part of the differential equation. - **Function \( \mathbf{f}(t) \):** The non-homogeneous part, providing external input. - **Initial Condition \( \mathbf{x}(0) \):** The state of the system at \( t = 0 \). - **Exponential Matrix \( e^{At} \):** Describes the system's homogeneous solution over time. - **General Solution \( \mathbf{x}(t) \):** Combines the homogeneous and particular solutions to meet the initial condition. The solution involves
Expert Solution
steps

Step by step

Solved in 5 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,