Use the method of separation of variables todetermine a non-trivial solution of the heat equation with boundary variables: k J²u du əx² It' u(0, t) = 0, 0 < x 0, u(L, t) = 0, t> 0 u(x,0) = f(x), 0 0 is X(x) = C₁ cos(√√x) + C₂ sin(√x), and T' + kXT = 0 is T(t) = C3e-kt, where C₁, C2, C3 will be determiend using = associated initial conditions.
Use the method of separation of variables todetermine a non-trivial solution of the heat equation with boundary variables: k J²u du əx² It' u(0, t) = 0, 0 < x 0, u(L, t) = 0, t> 0 u(x,0) = f(x), 0 0 is X(x) = C₁ cos(√√x) + C₂ sin(√x), and T' + kXT = 0 is T(t) = C3e-kt, where C₁, C2, C3 will be determiend using = associated initial conditions.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question

Transcribed Image Text:Use the method of separation of variables todetermine a non-trivial solution of the heat equation
with boundary variables:
k
J²u
du
əx² It'
u(0, t) = 0,
0 < x <L, L>0,
u(L, t) = 0, t> 0
u(x,0) = f(x), 0<x<L.
=
(1)
(2)
u = 0
0
u(x,x)
u = 0
I
I
L
X
Hint: A non-trivial general solution of X" + XX = 0 for λ> 0 is X(x) = C₁ cos(√√x) +
C₂ sin(√x), and T' + kXT = 0 is T(t) =
C3e-kt, where C₁, C2, C3 will be determiend using
=
associated initial conditions.
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated

Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education

Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY

Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,

