Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis. y = 2 + x - x², x + y = 2 V =
Optimization
Optimization comes from the same root as "optimal". "Optimal" means the highest. When you do the optimization process, that is when you are "making it best" to maximize everything and to achieve optimal results, a set of parameters is the base for the selection of the best element for a given system.
Integration
Integration means to sum the things. In mathematics, it is the branch of Calculus which is used to find the area under the curve. The operation subtraction is the inverse of addition, division is the inverse of multiplication. In the same way, integration and differentiation are inverse operators. Differential equations give a relation between a function and its derivative.
Application of Integration
In mathematics, the process of integration is used to compute complex area related problems. With the application of integration, solving area related problems, whether they are a curve, or a curve between lines, can be done easily.
Volume
In mathematics, we describe the term volume as a quantity that can express the total space that an object occupies at any point in time. Usually, volumes can only be calculated for 3-dimensional objects. By 3-dimensional or 3D objects, we mean objects that have length, breadth, and height (or depth).
Area
Area refers to the amount of space a figure encloses and the number of square units that cover a shape. It is two-dimensional and is measured in square units.
![### Using the Method of Cylindrical Shells
**Problem:**
Use the method of cylindrical shells to find the volume \( V \) generated by rotating the region bounded by the given curves about the \( y \)-axis.
\[
y = 2 + x - x^2, \quad x + y = 2
\]
**Solution:**
To find the volume \( V \), we shall follow these steps:
1. **Identify the region of integration:** Determine the points of intersection of the curves.
2. **Set up the integral using the method of cylindrical shells:** The formula for the volume using cylindrical shells is:
\[
V = 2\pi \int_{a}^{b} x \cdot f(x) \, dx
\]
Here, \( f(x) \) is the height of the shell and \( x \) is the radius of the shell.
3. **Evaluate the integral:** Compute the integral to find the volume.
---
**Please Solve:**
\[ V = \boxed{\phantom{\text{Solution Here}}} \]
By completing the calculation, we will obtain the volume of the solid.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F1c8b7e9c-3342-48f1-b698-8a1892e2f614%2F8d93be42-6fbd-4a4a-8549-e9cb97c6dd74%2Ffkgvpur_processed.jpeg&w=3840&q=75)

Trending now
This is a popular solution!
Step by step
Solved in 3 steps with 3 images









