Use the matrix A to encode the phrase "GO TO PLAN B".
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![**Matrix-Based Data Encryption Tutorial**
Matrices are commonly used to encrypt data. Here is a straightforward example of such an encryption technique. First, we represent each letter in the alphabet by a number, so let us take `<space>` as 0, A = 1, B = 2, and so on. Thus, for example, "ABORT MISSION" becomes:
\[ [1\ 2\ 15\ 18\ 20\ 0\ 13\ 9\ 19\ 19\ 9\ 15\ 14] \]
To encrypt this coded phrase, we use an invertible matrix of any size with integer entries. For instance, let us take A to be the \(2 \times 2\) matrix:
\[
\begin{bmatrix}
4 & 2 \\
3 & 1 \\
\end{bmatrix}
\]
We can first arrange the coded sequence of numbers in the form of a matrix with two rows (using zero in the last place if we have an odd number of characters) and then multiply on the left by A.
Encrypted Matrix =
\[
\begin{bmatrix}
4 & 2 \\
3 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 15 & 20 & 13 & 9 & 19 & 15 \\
2 & 18 & 0 & 9 & 19 & 9 & 14 \\
\end{bmatrix}
=
\begin{bmatrix}
8 & 96 & 80 & 70 & 48 & 114 & 66 & 42 & 42 \\
\end{bmatrix}
\]
which we can also write as:
\[ [8\ 5\ 96\ 63\ 80\ 60\ 70\ 48\ 114\ 76\ 66\ 42\ 56\ 42] \]
To decipher the encoded message, multiply the encrypted matrix by \(A^{-1}\) (the inverse of matrix A). The following exercise uses the above matrix A for encoding and decoding:
Use the matrix A to encode the phrase "GO TO PLAN B".
\[ \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \]
**Need Help?**
- [Read It]
- [](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F0ea8a38d-a0b8-4832-8dce-82192dedcf53%2Ff2d68168-f99d-4114-bced-77a5fb163bb0%2Fsy554tr.jpeg&w=3840&q=75)
Transcribed Image Text:**Matrix-Based Data Encryption Tutorial**
Matrices are commonly used to encrypt data. Here is a straightforward example of such an encryption technique. First, we represent each letter in the alphabet by a number, so let us take `<space>` as 0, A = 1, B = 2, and so on. Thus, for example, "ABORT MISSION" becomes:
\[ [1\ 2\ 15\ 18\ 20\ 0\ 13\ 9\ 19\ 19\ 9\ 15\ 14] \]
To encrypt this coded phrase, we use an invertible matrix of any size with integer entries. For instance, let us take A to be the \(2 \times 2\) matrix:
\[
\begin{bmatrix}
4 & 2 \\
3 & 1 \\
\end{bmatrix}
\]
We can first arrange the coded sequence of numbers in the form of a matrix with two rows (using zero in the last place if we have an odd number of characters) and then multiply on the left by A.
Encrypted Matrix =
\[
\begin{bmatrix}
4 & 2 \\
3 & 1 \\
\end{bmatrix}
\begin{bmatrix}
1 & 15 & 20 & 13 & 9 & 19 & 15 \\
2 & 18 & 0 & 9 & 19 & 9 & 14 \\
\end{bmatrix}
=
\begin{bmatrix}
8 & 96 & 80 & 70 & 48 & 114 & 66 & 42 & 42 \\
\end{bmatrix}
\]
which we can also write as:
\[ [8\ 5\ 96\ 63\ 80\ 60\ 70\ 48\ 114\ 76\ 66\ 42\ 56\ 42] \]
To decipher the encoded message, multiply the encrypted matrix by \(A^{-1}\) (the inverse of matrix A). The following exercise uses the above matrix A for encoding and decoding:
Use the matrix A to encode the phrase "GO TO PLAN B".
\[ \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \boxed{} \]
**Need Help?**
- [Read It]
- [
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)