Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
100%
![### Using the Limit Comparison Test to Determine Series Convergence
Consider the series:
\[ \sum_{k=1}^{\infty} \frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)} \]
We are tasked with using the Limit Comparison Test to determine if this series converges or diverges.
### Limit Comparison Test
To apply the Limit Comparison Test, we typically compare our given series to a known benchmark series. The goal is to find a simpler series \( b_k \) such that the limit
\[ \lim_{k \to \infty} \frac{a_k}{b_k} \]
is a positive, finite number.
In this case:
- **Series to be analyzed (\( a_k \))**: \(\frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}\)
- **Benchmark Series (\( b_k \))**: Choose a term which simplifies the behavior of \( a_k \) as \( k \) approaches infinity. For this problem, a reasonable choice might be \( \frac{1}{k^2} \).
### Steps:
1. **Form the ratio**: \(\frac{a_k}{b_k} = \frac{\frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}}{\frac{1}{k^2}}\).
2. **Simplify the expression**.
3. **Take the limit as \( k \) approaches infinity**.
Based on the problem setup, the solution follows these steps and determines whether the series converges or diverges.
### Conclusion
The correct answer for the convergence of the given series is indicated as:
- **\[ \bigcirc \] Diverges**
- \[ \,\_\ \] Converges
The series \(\sum_{k=1}^{\infty} \frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}\) diverges.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F71c0ef9f-cd3d-4be0-91e6-4ca83044b87b%2F1f03055e-96db-4344-b648-9139dc934dad%2F647j7r_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Using the Limit Comparison Test to Determine Series Convergence
Consider the series:
\[ \sum_{k=1}^{\infty} \frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)} \]
We are tasked with using the Limit Comparison Test to determine if this series converges or diverges.
### Limit Comparison Test
To apply the Limit Comparison Test, we typically compare our given series to a known benchmark series. The goal is to find a simpler series \( b_k \) such that the limit
\[ \lim_{k \to \infty} \frac{a_k}{b_k} \]
is a positive, finite number.
In this case:
- **Series to be analyzed (\( a_k \))**: \(\frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}\)
- **Benchmark Series (\( b_k \))**: Choose a term which simplifies the behavior of \( a_k \) as \( k \) approaches infinity. For this problem, a reasonable choice might be \( \frac{1}{k^2} \).
### Steps:
1. **Form the ratio**: \(\frac{a_k}{b_k} = \frac{\frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}}{\frac{1}{k^2}}\).
2. **Simplify the expression**.
3. **Take the limit as \( k \) approaches infinity**.
Based on the problem setup, the solution follows these steps and determines whether the series converges or diverges.
### Conclusion
The correct answer for the convergence of the given series is indicated as:
- **\[ \bigcirc \] Diverges**
- \[ \,\_\ \] Converges
The series \(\sum_{k=1}^{\infty} \frac{k^2 + 14}{k(k + 4)(k - 5)(k + 2)}\) diverges.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning