Use the laws of propositional logic to prove that the following compound propositions are tautologies. a. (p^q) → (q V r) b. ((¬p → q) ^ (p → r) ^ (q → r)) →r 5.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Use Laws plz.

1. Idempotent laws
pvp = p
pap=p
2. Associative laws
(p v q) vr = p v (q v r)
(p^q)ar=p^ (q^r)
3. Commutative laws
pvq = qvp
pnq = qAp
4. Distributive laws
pv (qAr) (φν)^ φVr)
p^(q vr) = (p^q) v (p ^r)
5. Identity laws
pVF = p
pAT = p
6. Domination laws
pVT =T
pAF = F
7. Complement laws
pV-p = T
pA-p = F
8. Double negation law
p= ץרה
9. De Morgan's laws
¬(p v q) = -p A ¬q
¬(p Aq) = -p V ¬4
10. Absorption laws
pv (p^ q) = p
p^ (p v q) = p
11. Conditional identities
p- q = -p v q
p+ q = (p → q) ^ (q → p)
Transcribed Image Text:1. Idempotent laws pvp = p pap=p 2. Associative laws (p v q) vr = p v (q v r) (p^q)ar=p^ (q^r) 3. Commutative laws pvq = qvp pnq = qAp 4. Distributive laws pv (qAr) (φν)^ φVr) p^(q vr) = (p^q) v (p ^r) 5. Identity laws pVF = p pAT = p 6. Domination laws pVT =T pAF = F 7. Complement laws pV-p = T pA-p = F 8. Double negation law p= ץרה 9. De Morgan's laws ¬(p v q) = -p A ¬q ¬(p Aq) = -p V ¬4 10. Absorption laws pv (p^ q) = p p^ (p v q) = p 11. Conditional identities p- q = -p v q p+ q = (p → q) ^ (q → p)
5.
Use the laws of propositional logic to prove that the following compound
propositions are tautologies.
a. (p ^q) → (q Vr)
b. ((-p → q) ^ (p → r) ^ (q → r)) → r
Transcribed Image Text:5. Use the laws of propositional logic to prove that the following compound propositions are tautologies. a. (p ^q) → (q Vr) b. ((-p → q) ^ (p → r) ^ (q → r)) → r
Expert Solution
steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,