Use the Laplace transform to solve the system X +y -X = cost, x'+ 2y 0, x(0) = y(0) = 0. OA. x(t) cos(2t) + - sin(2t) + 1-t e,y(t) = 1 cos 2t 1 sin 2t - 4 4. 1 -3t - e OB. 1 x(t) = sin(2t) + e 2 cos(2t) + sin 2t 4 cos 2t – OC. 1 cos(2t) + - sin(2f) - –e',y() = 1 sin 2t + = e 4 x(t) cos 2t = - - - O D 1 sin 2t + 4 1 x(t) = cos(2t) 2 - sin(21) - e',y(t) = -- cos 2t + 2 cos(2t) + - 2 e',y(t) 1 sin 2t 1 t e x(t) = sin(2t) + cos 2t – 4 3

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the Laplace transform to solve the system * +y -X = cost,
x'+2y 0, x(0) = y(0) = 0.
OA.
cos(2) + inc2) + ", y9 = ! cos 2t -! sin 2t - Le
1
1
cos 2t –
4
x(t) = - - cos(2t) + sin(2t) + - e",y(t)
1 -t
%3D
|
2.
O B.
1
1
1
1
1 t
x(t) 3=
-- cos(2t) + - sin(2f) + - e', y(t) = = cos 2t –
2(t)
sin 2t – Le*
2.
OC.
cos(2f) + sin(2t)-e',y(t)
2
1
1
1
= – cos 2t-
1
sin 2t +
x(t) =
– e,y(t) = - cos 2t -
-
-
-
OD.
1
x(t) = - - cos(2t) -
1
sin(2f) –
1
cos 2t +
1
sin 2t +
%3D
%3D
O .
x(t) =
e' ,yt) =
1
cos 2t -
4
1
1
1
-- cos(2t) + sin(2f) +
sin 2t – -e
%3D
%3D
3
Transcribed Image Text:Use the Laplace transform to solve the system * +y -X = cost, x'+2y 0, x(0) = y(0) = 0. OA. cos(2) + inc2) + ", y9 = ! cos 2t -! sin 2t - Le 1 1 cos 2t – 4 x(t) = - - cos(2t) + sin(2t) + - e",y(t) 1 -t %3D | 2. O B. 1 1 1 1 1 t x(t) 3= -- cos(2t) + - sin(2f) + - e', y(t) = = cos 2t – 2(t) sin 2t – Le* 2. OC. cos(2f) + sin(2t)-e',y(t) 2 1 1 1 = – cos 2t- 1 sin 2t + x(t) = – e,y(t) = - cos 2t - - - - OD. 1 x(t) = - - cos(2t) - 1 sin(2f) – 1 cos 2t + 1 sin 2t + %3D %3D O . x(t) = e' ,yt) = 1 cos 2t - 4 1 1 1 -- cos(2t) + sin(2f) + sin 2t – -e %3D %3D 3
Expert Solution
steps

Step by step

Solved in 7 steps with 7 images

Blurred answer
Knowledge Booster
Differential Equation
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,