Use the Laplace transform to solve the system X +y -X = cost, x'+ 2y 0, x(0) = y(0) = 0. OA. x(t) cos(2t) + - sin(2t) + 1-t e,y(t) = 1 cos 2t 1 sin 2t - 4 4. 1 -3t - e OB. 1 x(t) = sin(2t) + e 2 cos(2t) + sin 2t 4 cos 2t – OC. 1 cos(2t) + - sin(2f) - –e',y() = 1 sin 2t + = e 4 x(t) cos 2t = - - - O D 1 sin 2t + 4 1 x(t) = cos(2t) 2 - sin(21) - e',y(t) = -- cos 2t + 2 cos(2t) + - 2 e',y(t) 1 sin 2t 1 t e x(t) = sin(2t) + cos 2t – 4 3
Use the Laplace transform to solve the system X +y -X = cost, x'+ 2y 0, x(0) = y(0) = 0. OA. x(t) cos(2t) + - sin(2t) + 1-t e,y(t) = 1 cos 2t 1 sin 2t - 4 4. 1 -3t - e OB. 1 x(t) = sin(2t) + e 2 cos(2t) + sin 2t 4 cos 2t – OC. 1 cos(2t) + - sin(2f) - –e',y() = 1 sin 2t + = e 4 x(t) cos 2t = - - - O D 1 sin 2t + 4 1 x(t) = cos(2t) 2 - sin(21) - e',y(t) = -- cos 2t + 2 cos(2t) + - 2 e',y(t) 1 sin 2t 1 t e x(t) = sin(2t) + cos 2t – 4 3
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![Use the Laplace transform to solve the system * +y -X = cost,
x'+2y 0, x(0) = y(0) = 0.
OA.
cos(2) + inc2) + ", y9 = ! cos 2t -! sin 2t - Le
1
1
cos 2t –
4
x(t) = - - cos(2t) + sin(2t) + - e",y(t)
1 -t
%3D
|
2.
O B.
1
1
1
1
1 t
x(t) 3=
-- cos(2t) + - sin(2f) + - e', y(t) = = cos 2t –
2(t)
sin 2t – Le*
2.
OC.
cos(2f) + sin(2t)-e',y(t)
2
1
1
1
= – cos 2t-
1
sin 2t +
x(t) =
– e,y(t) = - cos 2t -
-
-
-
OD.
1
x(t) = - - cos(2t) -
1
sin(2f) –
1
cos 2t +
1
sin 2t +
%3D
%3D
O .
x(t) =
e' ,yt) =
1
cos 2t -
4
1
1
1
-- cos(2t) + sin(2f) +
sin 2t – -e
%3D
%3D
3](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe6b4dd8f-3685-4823-8dd4-d04b6c828b1c%2Fa602fece-5f4f-4e2e-abe9-abd26048c873%2Fuz4x2oks_processed.jpeg&w=3840&q=75)
Transcribed Image Text:Use the Laplace transform to solve the system * +y -X = cost,
x'+2y 0, x(0) = y(0) = 0.
OA.
cos(2) + inc2) + ", y9 = ! cos 2t -! sin 2t - Le
1
1
cos 2t –
4
x(t) = - - cos(2t) + sin(2t) + - e",y(t)
1 -t
%3D
|
2.
O B.
1
1
1
1
1 t
x(t) 3=
-- cos(2t) + - sin(2f) + - e', y(t) = = cos 2t –
2(t)
sin 2t – Le*
2.
OC.
cos(2f) + sin(2t)-e',y(t)
2
1
1
1
= – cos 2t-
1
sin 2t +
x(t) =
– e,y(t) = - cos 2t -
-
-
-
OD.
1
x(t) = - - cos(2t) -
1
sin(2f) –
1
cos 2t +
1
sin 2t +
%3D
%3D
O .
x(t) =
e' ,yt) =
1
cos 2t -
4
1
1
1
-- cos(2t) + sin(2f) +
sin 2t – -e
%3D
%3D
3
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 7 steps with 7 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)