Use the Laplace transform to solve the initial-value problem: [y'+4y=3 cos(3x), y(0) =5] --꽃 12 137 4x а) y(x): cos( 3x) + 25 sin (3x) + 25 25 113 12 + 25 -4x b) O y(x) = 25 cos( 3x) + 25 sin (3x) e 137 c) O y(x) = 12 cos( 3x) + -4 x 9 sin (3x) 25 - - 25 25 y(x) =3 cos( 3 x) +5 y(x) =3 cos(3x) – 5 e** f) O None of the above.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

will rate if correct!

Use the Laplace transform to solve the initial-value problem:
[y'+4y=3 cos(3x), y(0) =5]
--꽃
12
137 4x
а)
y(x):
cos( 3x) +
25
sin (3x) +
25
25
113
12
+
25
-4x
b) O y(x) =
25
cos( 3x) +
25
sin (3x)
e
137
c) O y(x) =
12
cos( 3x) +
-4 x
9
sin (3x)
25
- -
25
25
y(x) =3 cos( 3 x) +5
y(x) =3 cos(3x) – 5 e**
f) O None of the above.
Transcribed Image Text:Use the Laplace transform to solve the initial-value problem: [y'+4y=3 cos(3x), y(0) =5] --꽃 12 137 4x а) y(x): cos( 3x) + 25 sin (3x) + 25 25 113 12 + 25 -4x b) O y(x) = 25 cos( 3x) + 25 sin (3x) e 137 c) O y(x) = 12 cos( 3x) + -4 x 9 sin (3x) 25 - - 25 25 y(x) =3 cos( 3 x) +5 y(x) =3 cos(3x) – 5 e** f) O None of the above.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,